Презентация на тему классификация элементарных частиц. Презентация на тему "Элементарные частицы

    Слайд 2

    Тест 1.Какие физические системы образуются из элементарных частиц в результате электромагнитного взаимодействия? А. Электроны, протоны. Б. Ядра атомов. В. Атомы, молекулы вещества и античастицы. 2. С точки зрения взаимодействия все частицы делятся на три типа: А. Мезоны, фотоны и лептоны. Б. Фотоны, лептоны и барионы. В. Фотоны, лептоны и адроны. 3. Что является главным фактором существования элементарных частиц? А. Взаимное превращение. Б. Стабильность. В. Взаимодействие частиц друг с другом. 4. Какие взаимодействия определяют устойчивость ядер в атомах? А. Гравитационные. Б. Электромагнитные. В. Ядерные. Г. Слабые.

    Слайд 3

    6. Реальность превращения вещества в электромагнитное поле: А. Подтверждается на опыте аннигиляции электрона и позитрона. Б. Подтверждается на опыте аннигиляции электрона и протона. 7. Реакция превращения вещества в поле: А. е + 2γ→е+Б. е + 2γ→е- В.е+ +е- =2γ. 8. Какое взаимодействие ответственно за превращение элементарных частиц друг в друга? А. Сильное взаимодействие. Б. Гравитационное. В. Слабое взаимодействие Г. Сильное, слабое, электромагнитное. Ответы: В; В; А; В; Б; А; В; Г. 5. Существуют ли в природе неизменные частицы? А. Существуют. Б. Не существуют.

    Слайд 4

    1964г. Гелл-Манн и Цвейг – гипотеза о существовании кварков. Кварками назвали все предполагаемые «настоящие элементарные частицы» , из которых состоят все мезоны, барионы и резонансы. Для образования таких частиц у кварков должны были быть заряды +2\3 и -1\3. Таких частиц не знали!! n +2\3 -1\3 -1\3 u d d P +2\3 +2\3 -1\3 u d u Кварки:u, d, s ,c, b, t. Столько же антикварков Согласно принципа Паули: в одной системе взаимосвязанных частиц никогда не существует хотя бы две частицы с тождественными параметрами, если эти частицы обладают полуцелым спином.

    Слайд 5

    Омега – минус – гиперон состоит из трех одинаковых кварков. Нарушение принципа?? Кварки тождественны?? Тождественными быть не могут, следовательно отличаются какими-то неизвестными свойствами. Эти новые свойства – цветовые заряды. Существует три типа (цветовых) заряда у кварков. Красный, синий,желтый. Антикварки обладают: антикрасным, антисиним, антижелтым зарядом. Кварки с одинаковыми электрическими зарядами имеют разный цветовой заряд и между ними действует сила притяжения, обусловленная цветовым взаимодействием. Теория, описывающая цветовое взаимодействие – хромодинамика.

    Слайд 6

    В природе не существует свободных КВАРКОВ! Силы цветового взаимодействия увеличиваются с увеличением расстояния от кварка. При разрыве связи между кварками рождается пара «кварк - антикварк» Цветовое взаимодействие обеспечивается ГЛЮОНАМИ Комбинация из трех цветов и трех антицветов дает восемь разных глюонов. Считается сегодня, что в природе 36 кварков, 8 глюонов, 12 лептонов и фотонов, всего 57 «самых элементарных» частиц.

    Слайд 7

    Поиски самой простой первоосновы материи вновь привели к открытию качественно новой ступени познания природы. « Электрон так же неисчерпаем, как и атом, природа бесконечна…» В.И. Ленин Д/З § 87

Посмотреть все слайды

Презентация к уроку физики в 11 классе (профильный уровень)

Выполнила: Попова И.А., учитель физики Белово, 2012 г.

Слайд 2

Цель:

  • Ознакомление с физикой элементарных частиц и систематизация знаний по теме.
  • Развитие абстрактного, экологического и научного мышления учащихся на основе представлений об элементарных частицах и их взаимодействиях
  • Слайд 3

    Сколько элементов в таблице Менделеева?

    Всего лишь 92.

    Как? Там больше?

    Верно, но все остальные - искусственно полученные, они в природе не встречаются.

    Итак - 92 атома. Из них тоже можно составить молекулы, т.е. вещества!

    Но то, что все вещества состоят из атомов, утверждал еще Демокрит (400 лет до нашей эры).

    Он был большим путешественником, и его любимым изречением было:

    "Не существует ничего, кроме атомов и чистого пространства, все остальное - воззрение"

    Слайд 4

    Античастица - частица, имеющая ту же массу и спин, но противоположные значения зарядов всех типов;

    Хронология физики частиц

    Для любой элементарной частицы есть своя античастица

    Слайд 5

    Хронология физики частиц

    Все эти частицы были нестабильными, т.е. распадались на частицы с меньшими массами, в конечном счете превращаясь в стабильные протон, электрон, фотон и нейтрино (и их античастицы).

    Перед физиками - теоретиками встала труднейшая задача упорядочить весь обнаруженный "зоопарк" частиц и попытаться свести число фундаментальных частиц к минимуму, доказав, что другие частицы состоят из фундаментальных частиц

    Слайд 6

    Хронология физики частиц

    Эта модель к настоящему времени превратилась в стройную теорию всех известных типов взаимодействий частиц.

    Слайд 7

    Как обнаружить элементарную частицу?

    Обычно изучают и анализируютследы (траектории или треки), оставленные частицами, по фотографиям

    Слайд 8

    Классификация элементарных частиц

    Все частицы делятся на два класса:

    • Фермионы, которые составляют вещество;
    • Бозоны, через которые осуществляетсявзаимодействие.
  • Слайд 9

    Фермионы подразделяются на

    • лептоны
    • кварки.

    Слайд 10

    Кварки

    • Гелл-Манн и Георг Цвейг предложили кварковую модель в 1964 г.
    • Принцип Паули: в одной системе взаимосвязанных частиц никогда не существует хотя бы две частицы с тождественными параметрами, если эти частицы обладают полуцелым спином.

    М. Гелл-Маннна конференции в 2007 г.

    Слайд 11

    Что такое спин?

    • Спин демонстрирует, что существует пространство состояний, никак не связанное с перемещением частицы в обычном пространстве;
    • Спин (от англ. to spin – крутиться) часто сравнивают с угловым моментом «быстро вращающегося волчка» - это неверно!
    • Спин является внутренней квантовой характеристикой частицы, которая не имеет аналога в классической механике;
    • Спин (от англ. spin - вертеть[-ся], вращение) - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого
  • Слайд 12

    Спины некоторых микрочастиц

  • Слайд 13

    Кварки

    • Кварки участвуют в сильных взаимодействиях, а также в слабых и в электромагнитных.
    • Заряды кварков дробные - от -1/3e до +2/3e (e - заряд электрона).
    • Кварки в сегодняшней Вселенной существуют только в связанных состояниях - только в составе адронов. Например, протон - uud, нейтрон - udd.
  • Слайд 14

    Четыре вида физических взаимодействий

    • гравитационные,
    • электромагнитные,
    • слабые,
    • сильные.

    Слабое взаимодействие - меняет внутреннюю природу частиц.

    Сильные взаимодействия - обусловливают различные ядерные реакции, а также возникновение сил, связывающих нейтроны и протоны в ядрах.

    Механизм взаимодействий один: за счет обмена другими частицами - переносчиками взаимодействия.

    Слайд 15

    • Электромагнитное взаимодействие: переносчик - фотон.
    • Гравитационное взаимодействие: переносчики - кванты поля тяготения - гравитоны.
    • Слабые взаимодействия: переносчики - векторные бозоны.
    • Переносчики сильных взаимодействий: глюоны (от английского слова glue - клей), с массой покоя равной нулю.
    • И фотоны, и гравитоны не имеют массы (массы покоя) и всегда движутся со скоростью света.
    • Существенным отличием переносчиков слабого взаимодействия от фотона и гравитона является их массивность.
  • Слайд 16

    Свойства кварков

    Кварковыесупермультиплеты (триада и антитриада ) ,d,s> ,d,s>

    Слайд 17

    Свойства кварков: цвет

    Кварки имеют свойство, называемое цветовой заряд.

    Существуют три вида цветового заряда, условно обозначаемые как

    • синий,
    • зелёный
    • Красный.

    Каждый цвет имеет дополнение в виде своего антицвета -антисиний, антизелёный и антикрасный.

    В отличие от кварков, антикварки обладают не цветом, а антицветом, то есть противоположным цветовым зарядом.

    Слайд 18

    Свойства кварков: масса

    У кварков имеется два основных типа масс, несовпадающих по величине:

    масса токового кварка, оцениваемая в процессах со значительной передачей квадрата 4-импульса, и

    структурная масса(блоковая, конституэнтная масса); включает в себя ещё массу глюонного поля вокруг кварка и оценивается из массы адронов и их кваркового состава.

    Слайд 19

    Свойства кварков: аромат

    Каждый аромат (вид) кварка характеризуется такими квантовыми числами, как

    • изоспин Iz,
    • странность S,
    • очарование C,
    • прелесть (боттомность, красота) B′,
    • истинность (топность) T.
  • Слайд 20

    Слайд 21

    Слайд 22

    Слайд 23

    Характеристики кварков

    Слайд 24

    Рассмотрим задачи

  • Слайд 25

    Какая энергия выделяется при аннигиляции электрона и позитрона?

  • Слайд 26

    Какая энергия выделяется при аннигиляции протона и антипротона?

  • Слайд 27

    При каких ядерных процессах возникает нейтрино?

    А. При α - распаде.

    Б. При β - распаде.

    В. При излучении γ - квантов.

    Слайд 28

    При каких ядерных процессах возникает антинейтрино?

    А. При α - распаде.

    Б. При β - распаде.

    В. При излучении γ - квантов.

    Г. При любых ядерных превращениях

    Слайд 29

    Протон состоит из...

    А. . . .нейтрона, позитрона и нейтрино.Слайд 33

    1.Какие физические системы образуются из элементарных частиц в результате электромагнитного взаимодействия?

    А. Электроны, протоны. Б. Ядра атомов. В. Атомы, молекулы вещества и античастицы.

    2. С точки зрения взаимодействия все частицы делятся на три типа: А. Мезоны, фотоны и лептоны. Б. Фотоны, лептоны и барионы. В. Фотоны, лептоны и адроны.

    3. Что является главным фактором существования элементарных частиц? А. Взаимное превращение. Б. Стабильность. В. Взаимодействие частиц друг с другом.

    4. Какие взаимодействия определяют устойчивость ядер в атомах? А. Гравитационные. Б. Электромагнитные. В. Ядерные. Г. Слабые.

    Слайд 34

    6. Реальность превращения вещества в электромагнитное поле: А. Подтверждается на опыте аннигиляции электрона и позитрона. Б. Подтверждается на опыте аннигиляции электрона и протона.

    7. Реакция превращения вещества в поле: А. е + 2γ→е+Б. е + 2γ→е- В.е+ +е- =2γ.

    8. Какое взаимодействие ответственно за превращение элементарных частиц друг в друга? А. Сильное взаимодействие. Б. Гравитационное. В. Слабое взаимодействие Г. Сильное, слабое, электромагнитное.

    Ответы: В; В; А; В; Б; А; В; Г.

    5. Существуют ли в природе неизменные частицы?

    А. Существуют. Б. Не существуют.

    Слайд 35

    Литература

    Периодическая система элементарных частиц

    Ишханов Б.С. , Кэбин Э.И. Физика ядра и частиц, XX век /

    таблица элементарных частиц

    Частицы и античастицы

    Элементарные частицы. справочник > химическая энциклопедия /

    Физика элементарных частиц

    Кварк /sila.narod.ru/phisics/phisics_atom_04.htm

    Кварк. Материал из Википедии - свободной энциклопедии /

    2.О кварках.

    Гармония радуги

    Посмотреть все слайды


    Тест 1.Какие физические системы образуются из элементарных частиц в результате электромагнитного взаимодействия? А. Электроны, протоны. Б. Ядра атомов. В. Атомы, молекулы вещества и античастицы. 2. С точки зрения взаимодействия все частицы делятся на три типа: А. Мезоны, фотоны и лептоны. Б. Фотоны, лептоны и барионы. В. Фотоны, лептоны и адроны. 3. Что является главным фактором существования элементарных частиц? А. Взаимное превращение. Б. Стабильность. В. Взаимодействие частиц друг с другом. 4. Какие взаимодействия определяют устойчивость ядер в атомах? А. Гравитационные. Б. Электромагнитные. В. Ядерные. Г. Слабые.


    6. Реальность превращения вещества в электромагнитное поле: А. Подтверждается на опыте аннигиляции электрона и позитрона. Б. Подтверждается на опыте аннигиляции электрона и протона. 7. Реакция превращения вещества в поле: А. е + 2γе + Б. е + 2γе - В. е + +е - =2γ. 8. Какое взаимодействие ответственно за превращение элементарных частиц друг в друга? А. Сильное взаимодействие. Б. Гравитационное. В. Слабое взаимодействие Г. Сильное, слабое, электромагнитное. Ответы: В; В; А; В; Б; А; В; Г. 5. Существуют ли в природе неизменные частицы? А. Существуют. Б. Не существуют.


    1964г. Гелл-Манн и Цвейг – гипотеза о существовании кварков. Кварками назвали все предполагаемые «настоящие элементарные частицы», из которых состоят все мезоны, барионы и резонансы. Для образования таких частиц у кварков должны были быть заряды +2\3 и -1\3. Таких частиц не знали!! n +2\3 -1\3 u d d P +2\3 -1\3 u d u Кварки: u, d, s,c, b, t. Столько же антикварков Согласно принципа Паули: в одной системе взаимосвязанных частиц никогда не существует хотя бы две частицы с тождественными параметрами, если эти частицы обладают полуцелым спином.


    Омега – минус – гиперон состоит из трех одинаковых кварков. Нарушение принципа?? Кварки тождественны?? Тождественными быть не могут, следовательно отличаются какими-то неизвестными свойствами. Эти новые свойства – цветовые заряды. Существует три типа (цветовых) заряда у кварков. Красный, синий,желтый. Красный, синий, желтый. Антикварки обладают: антикрасным, антисиним, антижелтым зарядом. хромодинамика. Кварки с одинаковыми электрическими зарядами имеют разный цветовой заряд и между ними действует сила притяжения, обусловленная цветовым взаимодействием. Теория, описывающая цветовое взаимодействие – хромодинамика.


    КВАРКОВ! В природе не существует свободных КВАРКОВ! Силы цветового взаимодействия увеличиваются с увеличением расстояния от кварка. кварк - антикварк При разрыве связи между кварками рождается пара «кварк - антикварк» ГЛЮОНАМИ Цветовое взаимодействие обеспечивается ГЛЮОНАМИ Комбинация из трех цветов и трех антицветов дает восемь разных глюонов Считается сегодня, что в природе 36 кварков, 8 глюонов, 12 лептонов и фотонов, всего 57 «самых элементарных» частиц.

    Слайд 2

    Что относится к элементарным частицам?

    Частицы, из которых состоят атомы различных веществ- электрон, протон и нейтрон, - назвали элементарными. Слово «элементарный» подразумевало, что эти частицы являются первичными, простейшими, далее неделимыми и неизменяемыми.

    Слайд 3

    Как обнаружить элементарную частицу?

    Обычно изучают и анализируют следы (траектории или треки), оставленные частицами.

    Слайд 4

    История открытия элементарных частиц

  • Слайд 5

    Открытие электрона

    На основании опытов по электролизу М. Фарадей установил: заряды имеются в атомах всех химических элементов.

    Слайд 6

    В 1899 г. Дж. Томсон доказал реальность существования электронов.

    Слайд 7

    В 1909 г. Р. Милликен впервые измерил заряд электрона: q e = 1,602·10-19 Кл

    Слайд 8

    Открытие протона

    В 1919 г. Э. Резерфорд при бомбардировке азота альфа-частицами обнаружил протон: 147N + 42He→ → 178O + 11 p

    Слайд 9

    Открытие нейтрона

    В 1932 г. Д. Чедвик открыл новую частицу и назвал ее нейтроном, которая не имеет электрического заряда. В свободном состоянии нейтрон живет около 1000 с, потом распадается на протон, электрон и нейтрино: n → p + 0-1e + ν

    Слайд 10

    Опыты Резерфорда и явление радиоактивности показали, что атомы не являются простейшими неделимыми частицами. Было установлено, что атомы состоят из электронов, протонов и нейтронов, которые считались неспособными ни к каким изменениям и превращениям, т. е. элементарными или простейшими.

    Слайд 11

    Но вскоре выяснилось, что эти частицы вовсе не являются неизменными…

    Слайд 12

    Открытие позитрона

    В 1928 г. П. Дирак предсказал, а в 1932 г. Г. Андерсон открыл позитрон (е+), фотографируя следы космических частиц в камере Вильсона.

    Слайд 13

    Открытие других элементарных частиц

    В 1931 г. В.Паули предсказал, а в 1955 г. экспериментально зарегистрировал нейтрино и антинейтрино. В 1955 г. был открыт антипротон, а в 1959 г. - антинейтрон. В 1947 г. Х. Юкатава открыл π- мезон.

    Слайд 14

    Дальнейшие исследования частиц показали, что их нельзя считать элементарными. Каждая из этих частиц при взаимодействии с другими частицами и атомными ядрами может превращаться в другие частицы. Поэтому термин «элементарная частица» является условным. Сегодня обнаружено около 400 элементарных частиц.

    Слайд 15

    Слайд 16

    Гравитационное – взаимодействие между всеми частицами (гравитоны).

  • Слайд 17

    Большой линейчатый ускоритель

  • Слайд 18

    Линейный ускоритель

  • Слайд 19

    Ускоритель элементарных частиц

  • Слайд 20

    Элементарные частицы могут путешествовать во времени

    Исследования при помощи уникального прибора - Большого адронного коллайдера - позволят ученым отправлять элементарные частицы в прошлое. Это следует из теории, которую в ближайшее время планируют проверить на этом крупнейшем в мире ускорителе, находящемся на территории Женевы.

    Слайд 21

    Адронныйколлайдер

  • Слайд 22

    Физикам впервые удалось в течение относительно длительного времени удерживать атомы антивещества в специальной ловушке. Антиматерия - это "двойник" обычной материи с той разницей, что все частицы антивещества имеют противоположный знак заряда. При взаимодействии частиц вещества и антивещества происходит их взаимное уничтожение.

    Слайд 23

    Американские физики, работающие с ускорителем частиц "Теватрон" в Национальной лаборатории им. Энрико Ферми, готовы объявить о сенсационном открытии. Возможно, им удалось обнаружить новую элементарную частицу или даже новый вид физического взаимодействия

    Посмотреть все слайды

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

    ТРИ ЭТАПА В РАЗВИТИИ ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ Когда греческий философ Демокрит назвал простейшие, нерасчленимые далее частицы атомами (слово а т о м, напомним, означает неделимый), то ему, вероятно, все представлялось в принципе не очень сложным. Различные предметы, растения, животные построены из неделимых, неизменных частиц. Превращения, наблюдаемые в мире, - это простая перестановка атомов. Все в мире течет, все изменяется, кроме самих атомов, которые остаются неизменными. Этап первый. От электрона до позитрона 1897-1932 гг. Но в конце XIX в. было открыто сложное строение атомов и был выделен электрон как составная часть атома. Уже в ХХ в., были открыты протон и нейтрон - частицы, входящие в состав атомного ядра. Поначалу на все эти частицы смотрели точь-в-точь как Демокрит смотрел на атомы: их считали неделимыми и неизменными первоначальными сущностями, основными кирпичиками мироздания. (ок. 470 или 460 - 360-е гг. до н.э.) ДЕМОКРИТ

    Этап второй. От позитрона до кварков 1932 - 1970 гг. ТРИ ЭТАПА В РАЗВИТИИ ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ Ситуация привлекательной ясности длилась недолго. Все оказалось намного сложнее: как выяснилось, неизменных частиц нет совсем. В самом слове элементарная заключается двоякий смысл. С одной стороны, элементарный - это само собой разумеющийся, простейший. С другой стороны, под элементарным понимается нечто фундаментальное, лежащее в основе вещей (именно в этом смысле сейчас и называют субатомные частицы (частицы из которых состоят атомы) элементарными). Считать известные сейчас элементарные частицы подобными неизменным атомам Демокрита мешает следующий простой факт. Ни одна из частиц не бессмертна. Большинство частиц, называемых сейчас элементарными, не могут прожить более двух миллионных долей секунды, даже в отсутствие какого-либо воздействия извне. Лишь четыре частицы - фотон, электрон, протон и нейтрино - могли бы сохранять свою неизменность, если бы каждая из них была одна в целом мире.

    Но у электронов и протонов имеются опаснейшие собратья позитроны и антипротоны, при столкновении с которыми происходит взаимное уничтожение этих частиц и образование новых. Фотон, испущенный настольной лампой, живет не более 10 -8 с. Это то время, которое ему нужно, чтобы достичь страницы книги и поглотиться бумагой. Лишь нейтрино почти бессмертно из-за того, что оно чрезвычайно слабо взаимодействует с другими частицами. Однако и нейтрино гибнут при столкновении с другими частицами, хотя такие столкновения случаются крайне редко. Итак, в извечном стремлении к отысканию неизменного в нашем изменчивом мире ученые оказались не на «гранитном основании», а на «зыбком песке». Все элементарные частицы превращаются друг в друга, и эти взаимные превращения - главный факт их существования.

    Представления о неизменности элементарных частиц оказались несостоятельными. Но идея об их неразложимости сохранилась. Элементарные частицы уже далее неделимы, но они неисчерпаемы по своим свойствам. При столкновении частиц сверхвысоких энергий частицы не дробятся на нечто такое, что можно было бы назвать их составными частями. Нет, они рождают новые частицы из числа тех, которые уже фигурируют в списке элементарных частиц. Чем больше энергия сталкивающихся частиц, тем большее количество, и притом более тяжелых, частиц рождается. Это возможно благодаря тому, что при увеличении скорости масса частиц растет. Всего лишь из одной пары любых частиц с возросшей массой можно в принципе получить все известные на сегодняшний день частицы. Результат столкновения ядра углерода, имевшего энергию 60 млрд эВ (жирная верхняя линия), с ядром серебра фотоэмульсии. Ядро раскалывается на осколки, разлетающиеся в разные стороны. Одновременно рождается много новых элементарных частиц - пионов. Подобные реакции при столкновениях релятивистских ядер, полученных в ускорителе, впервые в мире были осуществлены в 1976 г. в лаборатории высоких энергий Объединенного тута ядерных исследований в г. Дубне под руководством академика А. М. Балдина.

    Конечно, что при столкновениях частиц с недоступной пока энергией будут рождаться и какие-то новые еще неизвестные частицы. Но сути дела это не изменит. Рождаемые при столкновениях новые частицы никак нельзя рассматривать как составные части частиц - «родителей»; Ведь «дочерние» частицы, если их ускорить, могут, не изменив своей природы, а только увеличив массу, породить в свою очередь при столкновениях сразу несколько таких же в точности частиц, какими были их «родители», да еще и множество других частиц. По современным представлениям элементарные частицы - это первичные, неразложимые далее частицы, из которых построена вся материя. Однако неделимость элементарных частиц не означает, что у них отсутствует внутренняя структура.

    Этап третий. От гипотезы о кварках до наших дней. ТРИ ЭТАПА В РАЗВИТИИ ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ 1964 гг. - … В 60-е гг. возникли сомнения в том, что все частицы, называемые сейчас элементарными, полностью оправдывают свое название. Часть из них, возможно даже большая часть, носит это название вряд ли заслуженно. Основание для сомнений простое: этих частиц очень много.

    Открытие новой элементарной частицы всегда составляло и сейчас составляет выдающийся триумф науки. Но уже довольно давно к каждому очередному триумфу начала примешиваться доля беспокойства. Триумфы стали следовать буквально друг за другом. Была открыта группа так называемых « странных » частиц: К-мезонов и гиперонов с массами, превышающими массу нуклонов. В 70-е гг. к ним прибавилась большая группа « очарованных » частиц с еще большими массами. Были открыты чрезвычайно короткоживущие частицы с временем жизни порядка 10 -22 -10 -23 с. Эти частицы были названы резонансами, и их число перевалило за двести. В 1964 г. М. Гелл -Манном и Дж. Цвейгом была предложена модель, согласно которой все частицы, участвующие в сильных (ядерных) взаимодействиях, построены из более фундаментальных (или первичных) частиц – кварков. В настоящее время в реальности кварков почти никто не сомневается, хотя в свободном состоянии они не обнаружены.

    ОТКРЫТИЕ ПОЗИТРОНА. АНТИЧАСТИЦЫ Существование двойника электрона - позитрона - было предсказано теоретически английским физиком П. Дираком в 1931 г. Поль Дирак (1902-1984) Поль Адриен Морис Дирак - английский физик, один из создателей квантовой механики, иностранный член-корреспондент АН СССР (1931). Разработал квантовую статистику (статистика Ферми - Дирака); релятивистскую теорию движения электрона (уравнение Дирака, 1928 год), предсказавшую позитрон, а также аннигиляцию и рождение пар. Заложил основы квантовой электродинамики и квантовой теории гравитации. Нобелевская премия (1933, совместно с Эрвином Шредингером). Одновременно Дирак предсказал, что при встрече позитрона с электроном обе частицы должны исчезать (аннигилировать), породив фотоны большой энергии. Может протекать и обратный процесс - рождение электронно-позитронной пары, - например, при столкновении фотона достаточно большой энергии (его масса должна быть больше суммы масс покоя рождающихся частиц) с ядром.

    1932 г. Позитрон был обнаружен с помощью камеры Вильсона, помещенной в магнитное поле. Направление искривления трека частицы указывало знак ее заряда, а по радиусу кривизны и энергии частицы было определено отношение ее заряда к массе. Оно оказалось по модулю таким же, как и у электрона. Первая фотография, доказавшая существование позитрона. Частица двигалась снизу вверх и, пройдя свинцовую пластинку, потеряла часть своей энергии. Из-за этого кривизна траектории увеличилась.

    Процесс рождения пары электрон - позитрон ɣ -квантом в свинцовой пластинке. В камере Вильсона, находящейся в магнитном поле, пара оставляет характерный след в виде двурогой вилки. То, что исчезновение (аннигиляция) одних частиц и появление других при реакциях между элементарными частицами является именно превращением, а не просто возникновением новой комбинации составных частей старых частиц, особенно наглядно обнаруживается именно при аннигиляции пары электрон - позитрон. Обе эти частицы обладают определенной массой в состоянии покоя и электрическими зарядами. Фотоны же, которые при этом рождаются, не имеют зарядов и не обладают массой покоя, так как не могут существовать в состоянии покоя.

    В свое время открытие рождения и аннигиляции электронно-позитронных пар вызвало настоящую сенсацию в науке. До того никто не предполагал, что электрон, старейшая из частиц, важнейший строительный материал атомов, может оказаться невечным. Впоследствии двойники (античастицы) были найдены у всех частиц. Античастицы противопоставляются частицам именно потому, что при встрече любой частицы с соответствующей античастицей происходит их аннигиляция, т. е. обе частицы исчезают, превращаясь в кванты излучения или другие частицы. Обнаружены сравнительно недавно антипротон и антинейтрон. Электрический заряд антипротона отрицателен.

    Атомы, ядра которых состоят из антинуклонов, а оболочка - из позитронов, образуют антивещество. Антиводород получен экспериментально. В 1995 году впервые удалось получить атомы антиводорода, состоящие из антипротона и позитрона, но они быстро аннигилировали, что не давало возможности изучить их свойства. Сейчас же атомщикам удалось собрать установку, создающую сложное магнитное поле, что позволило удержать неуловимые ранее атомы. И хотя время, на которое удалось зафиксировать антиводород, составило всего одну десятую долю секунды, по словам ученых, этого достаточно, чтобы снять спектры и провести детальное изучение частиц. Физикам CERN из коллаборации ALPHA удалось удержать частицы антиматерии от аннигиляции на протяжении 1000 секунд, Антиводород, с которым работали ученые, получили из нескольких десятков миллионов антипротонов и позитронов, источником для которых стал изотоп натрия 22 Na. Далее последовала многоступенчатая очистка. После этого несколько тысяч атомов антиматерии попали в магнитную ловушку.

    При аннигиляции антивещества с веществом энергия покоя превращается в кинетическую энергию образующихся гамма-квантов. Энергия покоя - самый грандиозный и концентрированный резервуар энергии во Вселенной. И только при аннигиляции она полностью высвобождается, превращаясь в другие виды энергии. Поэтому антивещество - самый совершенный источник энергии, самое калорийное «горючее». В состоянии ли будет человечество когда-либо это «горючее» использовать, трудно сейчас сказать.

    РАСПАД НЕЙТРОНА. ОТКРЫТИЕ НЕЙТРИНО Природа β-распада После вылета электрона из ядра заряд ядра, а значит, и число протонов увеличиваются на единицу. Массовое число ядра не меняется. Это означает, что число нейтронов уменьшается на единицу. Следовательно, внутри β -радиоактивных ядер нейтрон способен распадаться на протон и электрон. Протон остается в ядре, а электрон вылетает наружу. Только в стабильных ядрах нейтроны устойчивы. При β-распаде из ядра вылетает электрон. Но электрона в ядре нет. Откуда же он берется? Но вот что странно. Совершенно тождественные ядра испускают электроны различной энергии. Вновь образующиеся ядра, однако, совершенно одинаковы независимо от того, какова энергия испущенного электрона. Это противоречит закону сохранения энергии - самому фундаментальному физическому закону! Энергия исходного ядра оказывается неравной сумме энергий конечного ядра и электрона!!!

    Гипотеза Паули Швейцарский физик В. Паули предположил, что вместе с протоном и электроном при распаде нейтрона рождается какая-то частица- «невидимка», которая уносит с собой недостающую энергию. Частица эта не регистрируется приборами, потому что она не несет электрического заряда и не имеет массы покоя. Значит, она не способна производить ионизацию атомов, расщеплять ядра, т. е. не может вызвать эффекты, по которым можно судить о появлении частицы. Паули предположил, что гипотетическая частица просто очень слабо взаимодействует с веществом и поэтому может пройти сквозь большую толщу вещества, не обнаружив себя.

    Эту частицу Ферми назвал нейтрино, что означает «нейтрончик». Масса покоя нейтрино, как и предсказал Паули, оказалась равной нулю. За этими словами кроется простой смысл: покоящихся нейтрино нет. Едва успев появиться на свет, нейтрино сразу движется со скоростью 300000 км/с. Подсчитали, как взаимодействуют нейтрино с веществом в слое определенной толщины. Результат оказался далеко не утешительным в смысле возможности обнаружить эту частицу экспериментально. Нейтрино способно пройти в свинце расстояние, равное расстоянию, проходимому светом в вакууме за несколько лет.

    РАСПАД СВОБОДНОГО НЕЙТРОНА Роль нейтрино не сводится только к объяснению β- распада ядер. Очень многие элементарные частицы в свободном состоянии самопроизвольно распадаются с испусканием нейтрино. Именно так ведет себя нейтрон. Только в ядрах нейтрон за счет взаимодействия с другими нуклонами приобретает стабильность. Свободный же нейтрон живет в среднем 16 мин. Это было экспериментально доказано лишь после того, как были построены ядерные реакторы, дающие мощные пучки нейтронов. Нейтрино (символ ν) имеет античастицу, называемую антинейтрино (символ ν с чертой). При распаде нейтрона на протон и электрон излучается именно антинейтрино: Энергия нейтрона всегда больше суммы энергий протона и электрона. Избыточная энергия уносится с антинейтрино.

    Экспериментальное открытие нейтрино Несмотря на свою неуловимость, нейтрино (точнее, антинейтрино) после почти 26 лет его «призрачного существования» в научных журналах было открыто экспериментально. Теория предсказала, что при попадании антинейтрино в протон возникнут позитрон и нейтрон: + Вероятность такого процесса мала из-за чудовищной проникающей способности антинейтрино. Но если антинейтрино будет очень много, то можно надеяться их обнаружить.

    Нейтринная Баксанская станция В ущелье Баксан на Кавказе в монолитной скале проделан двухкилометровый тоннель и сооружена научная лаборатория, защищенная от космических лучей скалой толщиной в несколько километров. В лаборатории располагается аппаратура для регистрации солнечных нейтрино и нейтрино из космоса.

    ПРОМЕЖУТОЧНЫЕ БОЗОНЫ - ПЕРЕНОСЧИКИ СЛАБЫХ ВЗАИМОДЕЙСТВИЙ Распад нейтрона на протон, электрон и антинейтрино не может быть вызван ядерными силами, так как электрон не испытывает сильных взаимодействий и поэтому не может быть рожден за их счет. Рождение электронов возможно под действием электромагнитных сил. Но ведь есть еще антинейтрино, которое лишено электрического заряда и не участвует в электромагнитных взаимодействиях. Такая же ситуация возникает при распаде π -мезонов и других частиц с испусканием нейтрино или антинейтрино. Следовательно, должны быть какие-то другие взаимодействия, ответственные за распад нейтрона (и многих других частиц). Так на самом деле и есть. В природе существует четвертый тип сил - слабые взаимодействия. Именно эти силы являются главным действующим лицом в трагедии гибели частиц.

    Слабыми эти взаимодействия названы потому, что они действительно слабы: примерно в 10 14 раз слабее ядерных! Ими всегда можно пренебречь там, где проявляются сильные или электромагнитные взаимодействия. Но есть много процессов, которые могут быть вызваны только слабыми взаимодействиями. Из-за малого значения слабые взаимодействия не влияют на движение частиц заметным образом. Не ускоряют их и не замедляют. Слабые взаимодействия не способны удерживать какие-либо частицы друг возле друга с образованием связанных состояний. Тем не менее это силы в таком же смысле, как и электромагнитные и ядерные. Главное ведь в любом взаимодействии - это рождение и уничтожение частиц. А именно эти функции (особенно последнюю) слабые взаимодействия выполняют не торопясь, но совершенно неукоснительно.

    Слабые взаимодействия совсем не редкость. Напротив, они до крайности УНИВЕРСАЛЬНЫ. В них участвуют все частицы. Заряд, или, точнее, константа слабых взаимодействий, имеется у всех частиц. Но только для частиц, участвующих в других взаимодействиях, способность к слабым взаимодействиям несущественна. Лишь нейтрино ни к каким взаимодействиям, кроме слабых, неспособны (за исключением ультраслабых - гравитационных). Роль слабых взаимодействий в эволюции Вселенной совсем не мала. Если бы слабые взаимодействия выключились, то погасло бы Солнце и другие звезды.

    «Быстрые» и «медленные» лучше, чем «сильные» и «слабые» Слабые же взаимодействия слабы совсем не в том смысле, что ничто выдающееся в микромире им не под силу. Они могут вызвать развал любой частицы, обладающей массой покоя, если только это допускается законами сохранения. Соблюдение последнего условия весьма существенно. В противном случае нейтроны в ядрах были бы нестабильными и в природе не было бы ничего, кроме водорода. Действия слабых взаимодействий проявляются очень редко. В этом смысле они скорее медленные, чем слабые, и напоминают тяжелоатлета, способного поднять огромную штангу, но только очень и очень медленно. Сильные (ядерные) взаимодействия - это самые быстрые взаимодействия, и вызываемые ими превращения элементарных частиц происходят очень часто. Электромагнитные взаимодействия работают медленнее, чем сильные, но все же неизмеримо быстрее, чем слабые. Характерное время слабых взаимодействий 10 -10 с против 10 -21 С для электромагнитных. Однако при больших энергиях сталкивающихся частиц порядка ста миллиардов электронвольт слабые взаимодействия перестают быть слабыми по сравнению с электромагнитными.

    Как осуществляются слабые взаимодействия Долгое время считалось, что слабые взаимодействия происходят между четырьмя частицами в одной точке. В случае распада нейтрона это сам нейтрон, протон, электрон и антинейтрино. Была построена Э. Ферми, Р. Фейнманом и другими учеными соответствующая квантовая теория слабых взаимодействий. Правда, исходя из общих соображений о единстве сил природы, высказывалось предположение, что слабые взаимодействия, подобно всем другим, должны осуществляться посредством некоего «слабого» поля. Соответственно должны существовать кванты этого поля - частицы - переносчики взаимодействия. Но никаких экспериментальных указаний на это не было.

    Новый важнейший шаг в развитии теории слабых взаимодействий был сделан в 60-х гг. американскими физиками С. Вайнбергом, Ш. Глэшоу и пакистанским ученым А. Саламом, работавшим в Триесте. Ими была выдвинута смелая гипотеза о единстве слабых и электромагнитных взаимодействий. В основе гипотезы Вайнберга, Глэшоу и Салама лежало предположение, высказывавшееся ранее, о том, что слабые взаимодействия осуществляются путем обмена частицами, названными промежуточными или векторными бозонами, трех сортов: W + ,W – и Z 0 . Первые две частицы несут заряд, равный элементарному, а третья нейтральна.

    Суть новой гипотезы состоит в следующем: природа слабого и электромагнитного взаимодействий едина в том смысле, что на самом глубоком уровне истинная их сила одинакова и промежуточные бозоны взаимодействуют со всеми частицами на малых расстояниях точно так же, как фотоны с заряженными частицами. Соответственно на очень малых расстояниях слабые взаимодействия должны проявляться с той же силой, что и электромагнитные. Почему тогда эти взаимодействия все же оправдывают свое название? Почему вызываемые ими процессы протекают гораздо медленнее, чем электромагнитные процессы? Радиус слабых взаимодействий гораздо меньше, чем электромагнитных. Из-за этого они кажутся слабее электромагнитных.




  • Читайте также: