Какие химические элементы входят в состав клетки? Роль и функции химических элементов, входящих в состав клетки. Химический состав клетки - какой он

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.

Таблица 1. Содержание химических элементов в клетке

По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос - большой).

Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро - малый).

Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров - белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор - в состав нуклеиновых кислот, железо - в состав гемоглобина, а магний - в состав хлорофилла. Кальций играет важную роль в обмене веществ.

Часть химических элементов, содержащихся в клетке, входит в со став неорганических веществ - минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К + , Na + , Ca 2+ , Mg 2+) и анионов (HPO 2-/4 , H 2 PO -/4 , СI - , НСО 3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Из неорганических веществ в живой природе огромную роль играет вода .

Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани - всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.

Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды - потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?

В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет

Частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.

Вода - хороший растворитель . Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро - вода и филео - люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).

Гидрофобными (от греч. гидро - вода и фобос - страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость . Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества - вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.

НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.

ЭЛЕМЕНТЫ СОДЕРЖАНИЕ В ОРГАНИЗМЕ (%) БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ
Макроэлементы:
O.C.H.N 62-3 Входят в состав всех органических веществ клетки, воды
Фосфор Р 1,0 Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов
Кальций Са +2 2,5 У растений входит в состав оболочки клетки, у животных - в состав костей и зубов, активизирует свертываемость крови
Микроэлементы: 1-0,01
Сера S 0,25 Входит в состав белков, витаминов и ферментов
Калий К + 0,25 Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений
Хлор CI - 0,2 Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты
Натрий Na + 0,1 Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов
Магний Мg +2 0,07 Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен
Йод I - 0,1 Входит в состав гормона щитовидной железы - тироксина, влияет на обмен веществ
Железо Fе+3 0,01 Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам
Ультрамикроэлементы: менее 0,01, следовые количества
Медь Си +2 Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы
Марганец Мn Повышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения
Бор В Влияет на ростовые процессы растений
Фтор F Входит в состав эмали зубов, при недостатке развивается кариес, при избытке - флюороз
Вещества:
Н 2 0 60-98 Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций

ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

ВЕЩЕСТВА СТРОЕНИЕ И СВОЙСТВА ФУНКЦИИ
Липиды
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н 3 РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью Строительная - образует билипидный слой всех мембранных.
Энергетическая .
Терморегуляторная .
Защитная .
Гормональная (кортикостероиды, половые гормоны).
Компоненты витаминов D,E. Источник воды в организме.Запасное питательное вещество
Углеводы
Моносахариды:
глюкоза,
фруктоза,
рибоза,
дезоксирибоза
Хорошо растворимы в воде Энергетическая
Дисахариды:
сахароза,
мальтоза (солодовый сахар)
Растворимы в воде Компоненты ДНК, РНК, АТФ
Полисахариды:
крахмал,
гликоген,
целлюлоза
Плохо растворимы или нерастворимы в воде Запасное питательное вещество. Строительная - оболочка растительной клетки
Белки Полимеры. Мономеры - 20 аминокислот. Ферменты - биокатализаторы.
I структура - последовательность аминокислот в полипептидной цепи. Связь - пептидная - СО- NH- Строительная - входят в состав мембранных структур, рибосом.
II структура - a -спираль, связь - водородная Двигательная (сократительные белки мышц).
III структура - пространственная конфигурация a -спирали (глобула). Связи - ионные, ковалентные, гидрофобные, водородные Транспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин)
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию
Нуклеиновые кислоты: Биополимеры. Состоят из нуклеотидов
ДНК - дезокси-рибонуклеино-вая кислота. Состав нуклеотида: дезоксирибоза, азотистые основания - аденин, гуанин, цитозин, тимин, остаток Н 3 РО 4 . Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоению Образуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах
РНК - рибонуклеиновая кислота. Состав нуклеотида: рибоза, азотистые основания - аденин, гуанин, цитозин, урацил, остаток Н 3 РО 4 Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь
Информационная РНК Передача информации о первичной структуре белка, участвует в биосинтезе белка
Рибосомальная РНК Строит тело рибосомы
Транспортная РНК Кодирует и переносит аминокислоты к месту синтеза белка - рибосомам
Вирусная РНК и ДНК Генетический аппарат вирусов

Ферменты.

Важнейшая функция белков - каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами . Ни один биохимический процесс в организме не происходит без участия ферментов.

В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н 2 О 2) в 10 11 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО 2 +Н 2 О = Н 2 СО 3), ускоряет реакцию в 10 7 раз.

Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.

Вещество, на которое воздействует фермент, называют субстратом . Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.

Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат+Фермент - Фермент-субстратный комплекс - Фермент+Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество - продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.

Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром . Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.

Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.

Ферменты - это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов - специфичность действия в определенных условиях.

Нуклеиновые кислоты.

Нуклеиновые кислоты были от крыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его "нуклеином" (от лат. нуклеус - ядро).

В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот - ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин - А, тимин - Т, гуанин - Г или цитозин - Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.

Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.

В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.

Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин - тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.

Молекулы нуклеиновых кислот - ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК - хранение наследственной информации.

В клетках всех организмов имеются молекулы АТФ - аденозинтрифосфорной кислоты. АТФ - универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ - это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания - аденина, углевода - рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 12). Связи, обозначенные на рисунке значком, - богаты энергией и называются макроэргическими . Каждая молекула АТФ содержит две макроэргические связи.

При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ - аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ - аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может пре вращаться в АДФ, АДФ - в АТФ.

Молекулы АТФ не только расщепляются, но и синтезируются, по этому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.

Рис. 12. Схема строения АТФ.
аденин -

Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов - А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка. АТФ - универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.

Задачи и тесты по теме "Тема 4. "Химический состав клетки"."

  • полимер, мономер;
  • углевод, моносахарид, дисахарид, полисахарид;
  • липид, жирная кислота, глицерин;
  • аминокислота, пептидная связь, белок;
  • катализатор, фермент, активный центр;
  • нуклеиновая кислота, нуклеотид.
  • Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  • Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  • Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  • Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  • Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  • Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  • Сравнить дыхание и брожение.
  • Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  • Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  • Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  • Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  • Перечислить этапы белкового синтеза на уровне рибосом.
  • Алгоритм решения задач.

    Тип 1. Самокопирование ДНК.

    Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
    АГТАЦЦГАТАЦТЦГАТТТАЦГ...
    Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

    Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
    ТАЦТГГЦТАТГАГЦТАААТГ...

    Тип 2. Кодирование белков.

    Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
    С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

    Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
    АААЦАААЦУГЦГГЦУГЦГААГ

    С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
    АЦГЦЦЦАТГГЦЦГГТ...

    По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
    УГЦГГГУАЦЦГГЦЦА...

    Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
    Цистеин-глицин-тирозин-аргинин-пролин-...

    Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

    • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
    • Тема 5. "Фотосинтез." §16-17 стр. 44-48
    • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
    • Тема 7. "Генетическая информация." §14-15 стр. 39-44

    Абубекерова Альфия, Токарева Виктория, Матвеева Римма, ученицы 8 класса МКОУ "СОШ №1" г. Николаевска

    В проекте представлен ход работы и полученные результаты по выяснению роли химических элементов для живых организмов. В альбоме красочно представлена биологическая роль наиболее важных химических элементов.

    Скачать:

    Предварительный просмотр:

    Муниципальное казенное образовательное учреждение

    «Средняя общеобразовательная школа №1» города Николаевска Николаевского муниципального района Волгоградской области

    Проект на тему:

    Работу выполнили:

    Токарева Виктория, 8 класс

    Матвеева Римма, 8 класс

    Абубекерова Альфия, 8 класс

    Руководитель:

    Евдокимова А.С., учитель химии и биологии

    Николаевск, 2014 год

    1.Введение ………………………………………………………………….. 3

    2. Классификация химических элементов по функциональной роли и содержанию в организме…………………………………………………. 5

    3. Поступление химических элементов в организм…………………….6

    4. Биологическая роль химических элементов…………………………7

    5. Взаимосвязь химических элементов………………………………… 7

    6. Выводы…………………………………………………………………… 9

    7. Результат работы…………………………………………………………9

    9. Источники информации…………………………………………………9

    Приложение. ………………………………………………………………..11

    1. Введение.

    Актуальность

    В 8 классе мы начали изучать новый предмет – химию. Мы узнали, что на Земле существуют атомы различных химических элементов (их больше 100), у каждого есть свое название, есть свое место в Периодической системе химических элементов Д.И. Менделеева. Оказывается, что с названиями многих из них мы часто встречаемся в повседневной жизни. Например, реклама с экранов телевизоров постоянно призывает нас употреблять витамины, содержащие кальций и препараты, содержащие йод . А еще говорят, что зубная паста с фтором полезна для зубов, а железо необходимо для нормальной работы нашего организма. Почему же эти элементы так необходимы? А важны ли для живых организмов другие химические элементы? Сколько их требуется для нормальной работы организма? Где они содержатся, в каких продуктах? Что произойдет, если в организм попадет очень много или очень мало каких либо элементов? Мы считаем эти вопросы очень важными для сохранения здоровья человека.

    Проблема : слабая информированность учащихся о биологической роли химических элементов

    Цель - Выяснить биологическую роль наиболее распространенных химических элементов и использовать эту информацию для формирования у учащихся ценностного отношения к своему здоровью.

    Задачи:

    1. Определить группу наиболее встречающихся на нашей планете химических элементов и выяснить их биологическое значение.

    2. Выяснить важно ли сочетание и пропорциональное соотношение химических элементов при попадании в организм.

    3. Оформить полученную информацию в виде брошюры, стенда в кабинете химии.

    4. Выступить с данной информацией на уроке химии перед одноклассниками.

    Тип проекта : информационный (биология, химия)

    Направления проектной деятельности:

    1. Аналитическое (сбор информации)
    2. Творческое (создание брошюры и стенда)

    3) Представительское (создание презентации, выступление на уроке)

    Участники :

    Учащиеся 8 класса

    Ресурсное обеспечение проекта:

    Координатор – учитель химии Евдокимова Анна Сергеевна.

    Материальные ресурсы: ресурсы школьной мини-типографии, бумага формата А4, ватман, двусторонний скотч, компьютер, Интернет.

    Сроки реализации, этапы работы над проектом :

    1. Постановка проблемы, распределение заданий, «ролей» (январь)2014 года)
    2. Сбор информации (январь – февраль 2014 года)
    3. Обобщение результатов, создание альбома, оформление стенда, (февраль 2014 года)

    Результат : повышение информированности учащихся о биологической роли химических элементов

    Отсроченный результат : формирование более ответственного отношения к своему здоровью

    Практическая значимость (продукт): собранная в ходе выполнения проекта информация будет оформлена в виде брошюры, которой можно воспользоваться при подготовке к экзаменам, конкурсам, олимпиадам, а также будет оформлен стенд в кабинете химии, где ярко, красно и интересно будет представлена информация о биологической роли химических элементов. Возможно, данная информация позволит не только побудить учащихся ответственнее относится к своему здоровью, но и повысит интерес к предмету химия, поможет определиться с выбором профессии.

    2. Классификация химических элементов по функциональной роли и содержанию в организме.

    Биосфера содержит 100 млрд тонн живого вещества. Около 50% массы земной коры приходится на кислород, более 25% на кремний. Восемнадцать элементов (О, Si, Al, Fe, Ca. Na, К, Mg, H, Ti, С, Р, N, S, Cl, F, Мn, Ва) составляют 99,8% массы земной коры. Живые организмы принимают активное участие в перераспределении химических элементов в земной коре. Минералы, природные химические вещества, образуются в биосфере в различных количествах, благодаря деятельности живых веществ (образование железных руд, горных пород, в основе которых соединения кальция). Кроме этого, оказывают влияние техногенные загрязнения окружающей среды. Изменения, происходящие в верхних слоях земной коры, влияют на химический состав живых организмов. В организме можно обнаружить почти все элементы, которые есть в земной коре и морской воде. Содержание некоторых элементов в организме по сравнению с окружающей средой повышенное – это называют биологическим концентрированием элемента. Например, углерода в земной коре 0,35%, а по содержанию в живых организмах занимает второе место (21%). Однако эта закономерность наблюдается не всегда. Так, кремния в земной коре 27,6%, а в живых организмах его мало, алюминия – 7,45%, а в живых организмах -1·10 -5 %.

    В составе живого вещества найдено более 70 элементов.

    Элементы необходимые организму для построения и жизнедеятельности клеток и органов, называют биогенными элементами .

    Для 30 элементов биогенность установлена. Существует несколько классификаций биогенных элементов:

    А) По их функциональной роли:

    1) органогены, в организме их 97,4% (С, Н, О, N, Р, S),

    2) элементы электролитного фона (Na, К, Ca, Mg, Сl). Данные ионы металлов составляют 99% общего содержания металлов в организме;

    3) Микроэлементы – это биологически активные атомы центров ферментов, гормонов.

    Б) По концентрации элементов в организме биогенные элементы делят:

    1) макроэлементы (содержание их превышает 0,01% от массы тела)

    К ним относят 12 элементов: С, Н, О, N, Р, S, Na, К, Ca, Mg, Сl, Fe.

    2) микроэлементы (0,01%, от массы тела): Цинк , Йод , Фтор , Кремний , Хром , Медь , Марганец , Кобальт , Молибден , Никель , Бор , Бром , Мышьяк , Свинец , Олово , Литий , Кадмий , Ванадий , Селен

    3) ультрамикроэлементы (содержание их меньше чем 10 -5 % от массы тела).

    3. Поступление химических элементов в организм.

    Все живые организмы имеют тесный контакт с окружающей средой. Жизнь требует постоянного обмена веществ в организме. Поступлению в организм химических элементов способствует питание и потребляемая вода. Организм состоит из воды на 60%, 34% приходится на органические вещества и 6% на неорганические. Основными компонентами органических веществ являются С, Н, О. В их состав входят также N, P, S. В составе неорганических веществ обязательно присутствуют 22 химических элемента. Например, если вес человека составляет 70 кг, то в нём содержится (в граммах): Са - 1700, К - 250, Na –70, Mg - 42, Fe - 5, Zn - 3. На долю металлов приходится 2,1 кг. В соответствии с рекомендацией диетологической комиссии Национальной академии США ежедневное поступление химических элементов с пищей должно находиться на определенном уровне (таблица № 1).

    Таблица 1. Суточное поступление химических элементов в организм человека

    Химический элемент

    Суточное потребление, в мг

    Взрослые

    Дети

    Калий

    2000-5500

    Натрий

    1100-3300

    Кальций

    800-1200

    Магний

    300-400

    Цинк

    Железо

    10-15

    Марганец

    Медь

    1,5-3,0

    Титан

    0,85

    0,06

    Молибден

    0,075-0,250

    Хром

    0,05-0,20

    0,04

    Кобальт

    Около 0,2 витамин B 12

    0,001

    Хлор

    3200

    РО 4 3-

    800-1200

    SO 4 2-

    Йод

    0,15

    0,07

    Селен

    0,05-0, 07

    Фтор

    1,5-4,0

    0, 6

    Столько же химических элементов должно выводиться, поскольку их содержание в организме находится в относительном постоянстве.

    Современное состояние знаний о биологической роли элементов можно характеризовать как поверхностное прикосновение к этой проблеме. Накоплено много фактических данных по содержанию элементов в различных компонентах биосферы, ответные реакции организма на их недостаток и избыток.
    При недостаточном поступлении элемента в организм наносится существенный ущерб росту и развитию организма. Это объясняется снижением активности ферментов, в состав которых входит элемент. При повышении дозы этого элемента ответная реакция организма возрастает, достигает нормы (биотическая концентрация элемента). Дальнейшее увеличение дозы приводит к снижению функционирования вследствие токсического действия избытка элемента вплоть до летального исхода. Дефицит и избыток биогенного элемента наносит вред организму. Все живые организмы реагируют на недостаток и избыток или неблагоприятное соотношение элементов.

    Обычные микроэлементы, когда их концентрация в организме превышает биотическую концентрацию, проявляют токсическое действие на организм. Токсичные элементы при очень малых концентрациях не оказывают вредного воздействия на растения и животных. Например, мышьяк при микроконцентрациях оказывает биостимулирующее действие. Следовательно, нет токсичных элементов, а есть токсичные дозы. Таким образом, малые дозы элемента - лекарство, большие дозы - яд. «Все есть яд, и ничто не лишено ядовитости, одна лишь доза делает яд незаметным» - Парацельс. Уместно вспомнить слова таджикского поэта Рудаки: «Что нынче снадобьем слывет, то завтра станет ядом».

    4 . Биологическая роль химических элементов.

    Информация о биологической роли химических элементов указана в брошюре «Биологическая роль химических элементов» (Приложение №1)

    5. Взаимосвязь химических элементов,

    Необходимо помнить об определенных предосторожностях при употреблении минеральных комплексов (как лекарственных препаратов, так и биологически активных добавок к пище).

    Передозировка одного минерального вещества может привести к функциональным нарушениям и повышенному выделению другого минерального вещества. Возможно и развитие нежелательных побочных эффектов. Например, избыток цинка ведет к снижению уровня холестеринсодержащих липидов высокой плотности ("хорошего" холестерина).

    Главная биологическая функция калия - формирование совместно с другими электролитами (натрий, хлор) разницы потенциалов на мембранах клеток и передача ее изменения по клеточной мембране, за счет обмена с ионами натрия, что особенно важно для нервных и мышечных клеток. Это обуславливает постоянное присутствие в клетках натрия, хлора и калия. В организме эти элементы содержатся в определенном соотношении, обеспечивая гомеостаз (постоянство внутренней среды). Нарушение равновесия между калием и натрием ведет к патологии водного обмена, обезвоживанию, мышечной слабости.

    Избыток кальция может привести к недостатку фосфора, и наоборот. Обмен веществ так тонко устроен, что фосфор работает в тесной связке с кальцием (в норме эти вещества должны поступать в организм примерно в одинаковом количестве, в крайнем случае фосфора может быть в полтора раза больше). В реальности в современных продуктах его много больше, чем кальция. Учёные подсчитали, что, например, в питании среднего американца содержание фосфора в 2-4 раза выше, чем кальция. Избыточный фосфор стимулирует выработку гормона паращитовидными железами (это четыре горошины, расположенные рядом с щитовидкой). Тогда этот гормон начинает вымывать кальций из костей. Развивается остеопороз - кости становятся хрупкими и ломкими. Сегодня в мире эта болезнь приобрела характер эпидемии. Перелом шейки бедра у стариков и так называемый «вдовий горб» - типичные проявления остеопороза. Переломы из-за слабости кости возникают даже у подростков. В серьёзных исследованиях доказано, что у девочек, любящих пить колу и прочие газировки (в них добавляют фосфорную кислоту), в 3,14 раза чаще бывают такие переломы. А если они ещё и занимаются спортом, то риск переломов больше в 5 раз. Чем больше фосфатов в крови, тем выше риск инфарктов и смертность от сердечно-сосудистых заболеваний. Фосфор помогает развитию кальцификации. Это самое тяжёлое и необратимое поражение сосудов, при котором на их внутренней стенке откладывается кальций, образуя плотные, как кость, бляшки.

    Избыток молибдена уменьшает содержание меди.

    Избыток вольфрама уменьшает содержание молибдена.

    На фоне дефицита железа, а также кальция, фосфора, магния и цинка способность организма усваивать свинец увеличивается и т.д.

    При потреблении минеральных веществ, следует строго придерживаться медицинских рекомендаций!

    6. Выводы:

    Мы выяснили, что многие химические элементы (более 30) имеют определенное значение для живых организмов. Такие элементы как С, Н, О, N, Р, S, являясь макроэлементами играют большую роль, из них построены клетки живого организма. Другие, хоть и имеют малое содержание в организме (микроэлементы), так же необходимы. Но для большинства элементов как недостаток, так и избыток оказывает вредное воздействие на организм.

    Мы разобрались так же, откуда поступают элементы в наш организм, как избежать избыточного и недостаточного их содержания.

    Имеются элементы, малая доза которых является токсичной. Это такие элементы как мышьяк, свинец, ртуть, кадмий и др. Тяжелые металлы имеют способность накапливаться в организме.

    Важно также взаимное влияние обмена одного элемента на обмен другого. Так, например фосфор и кальций должны попадать в организм в определенном соотношении. Если фосфора попадает больше, то это способствует вымыванию кальция из костей и др. последствиям.

    7. Результат работы:

    1) Нашли и обобщили информацию о биологической роли химических элементов.

    2) Создали брошюру «Биологическая роль химических элементов» (приложение №1)

    3) Создали презентацию о биологической роли химических элементов и выступили с ней на уроке химии в 8 и 9-ых классах (приложение №2).

    4) Оформили стенд в кабинете химии (приложение №3).

    8. Источники информации:

    1) Конспект лекций по общей химии. Челябинская государственная медицинская академия. А. В. Жолнин.

    2) Ливанов П.А.,Соболев М.Б., Ревич Б. А. Свинцовая опасность и здоровье населения. // Рос. Сем. Врач. 1999, No 2, с. 18–26.

    3) Корбанова А.И., Сорокина Н.С., Молодкина Н.Н. Свинец и его действие на

    Организм. // Мед. труда и пром. экология. 2001, No 5, с. 29–34.

    4) Химия. Учебник для 9 кл. Габриелян О.С.

    5) Ресурсы сети Интернет:

    wikipedia.org и др.

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него:

    Элементный состав организма

    По химическому составу клетки разных организмов могут заметно отличаться, однако состоят они из одинаковых элементов. В клетках обнаружено около 70 элементов периодической таблицы Д.И. Менделеева, но только 24 из них имеют важное значение и встречаются в живых организмах постоянно.

    Макроэлементы – кислород, углеводород, водород, азот – входят в состав молекул органических веществ. К макроэлементам в последнее время относят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента.

    Магний входит в состав хлорофилла; железо – гемоглобина; фосфор – костной ткани, нуклеиновых кислот; кальций – костей, черепашек моллюсков, сера – в состав белков; калий, натрий и хлор-ионы берут участие в смене потенциала клеточной мембраны.

    Микроэлементы представлены в клетке сотыми и тысячными долями процента. Это цинк, медь, йод, фтор, молибден, бор и др.

    Микроэлементы входят в состав ферментов, гормонов, пигментов.

    Ультрамикроэлементы – элементы, содержание которых в клетке не превышает 0,000001%. Это уран, золото, ртуть, цезий и др.

    Вода и её биологическое значение

    Вода количественно занимает среди химических соединений первое место во всех клетках. В зависимости от типа клеток, их функционального состояния, вида организма и условий его нахождения её содержание в клетках существенно колеблется.

    Клетки костной ткани содержат не больше 20% воды, жировой ткани – около 40%, мышечные клетки – 76%, а клетки зародыша – более 90%.

    Замечание 1

    В клетках любого организма с возрастом количество воды заметно уменьшается.

    Отсюда – вывод, что чем выше функциональная активность организма в целом и каждой клетки отдельно тем большим в них есть содержание воды, и наоборот.

    Замечание 2

    Обязательным условием жизненной активности клеток является наличие воды. Она является основной частью цитоплазмы, поддерживает её структуру и стойкость коллоидов, входящих в состав цитоплазмы.

    Роль воды в клетке определяется её химическими и структурными свойствами. Прежде всего это связано с небольшим размером молекул, их полярностью и способностью соединяться с помощью водородных связей.

    Водородные связи образуются при участии атомов водорода, соединённых с электронегативным атомом (обычно кислородом или азотом). При этом атом Гидрогена приобретает настолько большой позитивный заряд, что может образовать новую связь с другим электронегативным атомом (кислорода или азота). Так же связываются друг с другом молекулы воды, у которых один конец имеет позитивный заряд, а другой – негативный. Такую молекулу называют диполем . Более электронегативный атом кислорода одной молекулы воды притягивается к позитивно заряженному атому водорода другой молекулы с образованием водородной связи.

    Благодаря тому, что молекулы воды полярные и способны образовывать водородные связи, вода является совершенным растворителем для полярных веществ, которые называются гидрофильными . Такими являются соединения ионного характера, в которых заряженные частички (ионы) диссоциируют (разделяются) в воде при растворении вещества (соли). Такую же способность имеют и некоторые неионные соединения, в молекуле которых находятся заряженные (полярные) группы (в сахарах, аминокислотах, простых спиртах это ОН-группы). Вещества, состоящие из неполярных молекул (липиды), в воде практически нерастворимы, то есть они гидрофобы .

    При переходе вещества в раствор, его структурные частички (молекулы или ионы) приобретают возможность двигаться свободнее, а, соответственно, возрастает реакционная способность вещества. Благодаря этому вода является основной средой, где происходит большинство химических реакций. Кроме того, все окислительно-восстановительные реакции и реакции гидролиза проходят при непосредственном участии воды.

    Вода имеет наибольшую удельную теплоёмкость среди всех известных веществ. Это означает, что при существенном увеличении тепловой энергии температура воды повышается сравнительно немного. Это обусловлено использованием значительного количества этой энергии на разрыв водородных связей, которые ограничивают подвижность молекул воды.

    Благодаря большой теплоёмкости вода служит защитой для тканей растений и животных от сильного и быстрого повышения температуры, а высокая теплота парообразования является основой для надёжной стабилизации температуры тела организма. Необходимость значительного количества энергии для испарения воды вызвана тем, что между её молекулами существуют водородные связи. Эта энергия поступает из окружающей среды, потому испарение сопровождается охлаждением. Этот процесс можно наблюдать во время потоотделения, в случае тепловой задышки у собак, важна она и в процессе охлаждения транспирирующих органов растений, особенно в пустынных условиях и в условиях сухих степей и периодов засухи в других регионах.

    Вода имеет так же высокую теплопроводность, чем обеспечивается равномерное распределение тепла по организму. Таким образом нет риска возникновения локальных «горячих точек», которые могут стать причиной повреждения элементов клеток. Значит, высокая удельная теплоёмкость и высокая для жидкости теплопроводность делают воду идеальной средой для поддержания оптимального теплового режима организма.

    Для воды характерно высокое поверхностное натяжение. Это её свойство очень важно для адсорбционных процессов, движения растворов по тканях (кровообращение, восходящее и нисходящее движение по растению и т.п.).

    Вода используется как источник кислорода и водорода, которые выделяются во время световой фазы фотосинтеза.

    К важным физиологическим свойствам воды относится её способность растворять газы ($O_2$, $CO_2$ и др.). Кроме того, вода как растворитель участвует в процессе осмоса, что играет важную роль в жизнедеятельности клеток и организма.

    Свойства углеводорода и его биологическая роль

    Если не брать во внимание воду, можно сказать, что большая часть молекул клетки принадлежит к углеводородным, так называемым органическим, соединениям.

    Замечание 3

    Углеводород, имея уникальные химические способности, фундаментальные для жизни, составляет её химическую основу.

    Благодаря небольшому размеру и наличию на внешней оболочке четырёх электронов атом углеводорода может образовывать четыре крепких ковалентных связи с другими атомами.

    Самое важное значение имеет способность атомов углеводорода соединяться друг с другом, образуя цепи, кольца и, в конце концов, скелет больших и сложных органических молекул.

    К тому же углеводород легко образует ковалентные связи с другими биогенными элементами (обычно с $H, Mg, P, O, S$). Именно этим объясняется существование астрономического количества разнообразных органических соединений, которые обеспечивают существование живых организмов во всех его проявлениях. Разнообразие их проявляется в структуре и размерах молекул, их химических свойствах, степени насыщенности карбонового скелета и различной форме молекул, что определяется углами внутримолекулярных связей.

    Биополимеры

    Это высокомолекулярные (молекулярная масса 103 – 109) органические соединения, макромолекулы которых состоят из большого количества звеньев, которые повторяются, - мономеров.

    К биополимерам относятся белки, нуклеиновые кислоты, полисахариды и их производные (крахмал, гликоген, целлюлоза, гемицеллюлоза, пектиновые вещества, хитин и пр.). Мономерами для них являются соответственно аминокислоты, нуклеотиды и моносахариды.

    Замечание 4

    Около 90% сухой массы клетки составляют биополимеры: у растений преобладают полисахариды, а у животных – белки.

    Пример 1

    В клетке бактерий находится около 3 тыс. видов белков и 1 тыс. нуклеиновых кислот, а у человека количество белков оценивают в 5 млн.

    Биополимеры не только образуют структурную основу живых организмов, но и в процессах жизнедеятельности играют проводящую роль.

    Структурной основой биополимеров являются линейные (белки, нуклеиновые кислоты, целлюлоза) или разветвлённые (гликоген) цепи.

    И нуклеиновых кислот, имунные реакции, реакции обмена веществ - и осуществляются благодаря образованию биополимерных комплексов и другим свойствам биополимеров.

    Биологическая роль химических элементов в организме человека чрезвычайно разнообразна.

    Главная функция макроэлементов состоит в построении тка­ней, поддержании постоянства осмотического давления, ионного и кислотно-основного состава.

    Микроэлементы, входя в состав ферментов, гормонов, витами­нов, биологически активных веществ в качестве комплексообра-зователей или активаторов, участвуют в обмене веществ, про­цессах размножения, тканевом дыхании, обезвреживании токси­ческих веществ. Микроэлементы активно влияют на процессы кроветворения, окисления - восстановления, проницаемость со­судов и тканей. Макро- и микроэлементы - кальций, фосфор, фтор, иод, алюминий, кремний - определяют формирование костной и зубной тканей.

    Имеются данные, что содержание некоторых элементов в организме человека меняется с возрастом. Так, содержание кад­мия в почках и молибдена в печени к старости повышается. Максимальное содержание цинка наблюдается в период полово­го созревания, затем оно понижается и в старости доходит до минимума. Уменьшается с возрастом и содержание других мик­роэлементов, например ванадия и хрома.

    Выявлено немало заболеваний, связанных с недостатком или избыточным накоплением различных микроэлементов. Дефицит фтора вызывает кариес зубов, дефицит иода - эндемический зоб, избыток молибдена - эндемическую подагру. Такого рода зако­номерности связаны с тем, что в организме человека поддержи­вается баланс оптимальных концентраций биогенных элемен­тов - химический гомеостаз. Нарушение этого баланса вслед-

    ствие недостатка или избытка элемента может приводить к раз­личным заболеваниям

    Кроме шести основных макроэлементов - органогенов - угле­рода, водорода, азота, кислорода, серы и фосфора, из которых состоят углеводы, жиры, белки и нуклеиновые кислоты, для нор­мального питания человека и животных необходимы «неоргани­ческие» макроэлементы - кальций, хлор, магний, калий, нат­рий - и микроэлементы - медь, фтор, иод, железо, молибден, цинк, а также, возможно (для животных доказано), селен, мышьяк, хром, никель, кремний, олово, ванадий.

    Недостаток в пищевом рационе таких элементов, как железо, медь, фтор, цинк, иод, кальций, фосфор, магний и некоторых других, приводит к серьезным последствиям для здоровья чело­века.

    Однако необходимо помнить, что для организма вреден не только недостаток, но и избыток биогенных элементов, так как при этом нарушается химический гомеостаз. Например, при по­ступлении избытка марганца с пищей в плазме повышается уро­вень меди (синергизм Мп и Си), а в почках он снижается (анта­гонизм). Повышение содержания молибдена в продуктах пита­ния приводит к увеличению количества меди в печени. Избыток цинка в пище вызывает угнетение активности железосодержащих ферментов (антагонизм 2п и Ре).

    Минеральные компоненты, которые в ничтожно малых коли­чествах являются жизненно необходимыми, при более высоких концентрациях становятся токсичными.

    Жизненная необходимость, дефицит, токсичность химическо­го элемента представлены в виде кривой зависимости «Концент­рация элемента в пищевых продуктах - реакция организма» (рис. 5.5). Приблизительно горизонтальный участок кривой (пла­то) описывает область концентраций, соответствующих опти­мальному росту, здоровью, воспроизведению. Большая протя­женность плато указывает не только на малую токсичность эле­мента, но также на большую способность организма к адаптации по отношению к значительным изменениям содержания этого элемента. Наоборот, узкое плато свидетельствует о значительной токсичности элемента и резком переходе от необходимых орга­низму количеств к опасным для жизни. При выходе за плато (увеличение концентрации микроэлемента) все элементы стано­вятся токсичными. В конечном счете существенное увеличение концентрации микроэлементов может привести к летальному исходу.

    Ряд элементов (серебро, ртуть, свинец, кадмий и др.) счи-

    таются токсичными, так как попадание их в организм уже в мик­роколичествах приводит к тяжелым патологическим явлениям. Химический механизм токсического воздействия некоторых мик­роэлементов будет рассмотрен ниже.

    Биогенные элементы нашли широкое применение в сельском хозяйстве. Добавление в почву незначительных количеств микро­элементов - бора, меди, марганца, цинка, кобальта, молибде­на - резко повышает урожайность многих культур. Оказывается, что микроэлементы, увеличив активность ферментов в растениях, способствуют синтезу белков, витаминов, нуклеиновых кислот, Сахаров и крахмала. Некоторые из химических элементов поло­жительно действуют на фотосинтез, ускоряют рост и развитие растений, созревание семян. Микроэлементы добавляют в корм животным, чтобы повысить их продуктивность.

    Широко используют различные элементы и их соединения в качестве лекарственных средств.

    Таким образом, изучение биологической роли химических элементов, выяснение взаимосвязи обмена этих элементов и дру­гих биологически активных веществ - ферментов, гормонов, ви­таминов - способствует созданию новых лекарственных препара­тов и разработке оптимальных режимов их дозирования как с лечебной, так и с профилактической целью.



    Читайте также: