Анаэробное разложение. Аэробное и анаэробное разложение клетчатки

Кривые выживаемости Salmonella в отстое, образующемся в реакторе при анаэробном разложении.  

Процессы анаэробного разложения оказывают ингибирую-щее действие и на микроорганизмы, патогенные для растений.  

Процесс анаэробного разложения органических веществ протекает в две стадии с образованием продуктов кислой и щелочной природы. При кислом брожении вещества разлагаются до жирных кислот, спиртов, альдегидов, которые в свою очередь расщепляются до водорода, углекислого газа, аммиака и др. При щелочном (метановом) брожении распад органических веществ протекает более интенсивно, в результате чего образующиеся продукты первой стадии разлагаются до углекислого газа, водорода и метана. Водород используется микроорганизмами для восстановления углекислого газа до метана.  

Этан, пропан п бутан генерируются в процессе микробиального, анаэробного разложения органического вещества.  

Приведенные результаты позволяют заключить, что ведущую роль в процессах анаэробного разложения органического материала играют облигатные анаэробные бактерии. Однако систематическое выявление в содержимом метантенков аэробов и факультативных анаэробов свидетельствуют о том, что эти микроорганизмы также участвуют в деструкции органических веществ, и при определенных условиях численность их может существенно возрастать. Так, при добавлении к ферментируемой жидкости глюкозы количество аэробных и факультативно анаэробных бактерий повышается от 1 X Ю6 до 3 2 X 109 клеток / мл (цит.  

Анализ работ, посвященных исследованию микрофлоры, участвующей в процессах аэробного и анаэробного разложения органических отходов, показывает, что при очистке сточных вод в различного типа сооружениях получают преимущество и более интенсивно развиваются определенные таксоны микроорганизмов.  

Задача 5. Переменные.  

При рассмотрении предыдущей задачи мы видели, что модельные уравнения, описывающие процесс анаэробного разложения в двухфазной системе (жидкость - газ), достаточно сложны и содержат большое число различных параметров. Поэтому для получения предварительных выводов о поведени системы обычно используется упрощенная модель, учитывающая лишь жидкую фазу.  

Для переработки ила, образующегося на первом и втором этапах, обычно используется процесс анаэробного разложения. При этом уменьшается объем осадка и количество патогенов, устраняется запах, а кроме того, образуется ценное органическое топливо - метан.  

Тем не менее использование заражающего материала из активно эксплуатируемой установки при запуске вновь построенной установки, безусловно, является эффективным, особенно в случае процессов анаэробного разложения.  

Пеналы с пробирками помещаются в термостат, где выдерживаются при температуре 34 - 35 С в течение 10 - 25 дней. При наличии процессов анаэробного разложения клетчатки (развитие ц / р бактерий) фильтровальная бумага начинает разрушаться. Интенсивность развития ц / р бактерий оценивается на основании наблюдения за скоростью и степенью разложения полосок фильтровальной бумаги.  

Брожение твердой фазы в эмшеровском бассейне происходит при обычной температуре сточных вод. Естественно было предположить, что подогрев этой бродящей массы на 10 - 20 С увеличит (согласно закону Фант Хоффа) интенсивность биохимического npo. И действительно, в метантенке (рис. 40), который представляет собой отдельную бродильную камеру, процесс анаэробного разложения органического вещества происходит с максимальной напряженностью.  

Корни многих высших растений в подтопленную почву не прорастают; если же зеркало подпочвенных вод поднимается уже после того, как корни проникли в глубь почвы, то они отмирают. Явления эти могут отчасти представлять собой прямую реакцию на нехватку кислорода, а отчасти - реакцию на накопление некоторых газов (таких, например, как сероводород, метан и этилен), выделяемых в результате жизнедеятельности микроорганизмов, участвующих в процессах анаэробного разложения органических веществ. Даже если корни не отмирают при нехватке кислорода, они могут прекратить всасывание минеральных веществ и растения все равно будут страдать от минерального голодания.  


Токсичные вещества влияют на анаэробный процесс приблизительно так же, как и на аэробный. Анаэробные микроорганизмы не отличаются какой-либо особой чувствительностью к токсичным веществам. Поскольку процесс анаэробного разложения основан в первую очередь на действии медленно растущих метаногенных бактерий, то и действие ингибиторов следует рассматривать прежде всего в связи с этой группой бактерий. В табл. 3.16 представлены такие концентрации токсичных веществ, которые воздействуют на анаэробный процесс. Как и в других биологических системах, в анаэробном сообществе также может развиваться устойчивость к токсичным веществам.  

    Анаэробное разложение разложение без кислорода. Данное разложение происходит обычно в болотах. Без кислорода разложение длится дольше, чем с ним. Когда животное или растение погибают в болоте от нехватки кислорода, то они начинают… … Википедия

    Анаэробное разложение - процесс биотермического распада органического вещества бытовых отходов под воздействием микрофлоры без доступа воздуха. Выделяют 4 фазы: анаэробное разложение без выделения метана (кислое брожение) первые 15 дней после укладки отходов; с… … Официальная терминология

    анаэробное разложение - — Тематики нефтегазовая промышленность EN anaerobic decomposition … Справочник технического переводчика

    анаэробное разложение - anaerobinis skaidymas statusas T sritis ekologija ir aplinkotyra apibrėžtis Biologinis skaidymas veikiant mikroorganizmams, kurių gyvybinei veiklai nereikia deguonies (anaerobams). atitikmenys: angl. anaerobic decomposition; anaerobic degradation … Ekologijos terminų aiškinamasis žodynas

    анаэробное разложение (биогазификация) - 3.3 анаэробное разложение (биогазификация): Биологическое разложение органических веществ какого либо материала в отсутствие потребления свободного кислорода или воздуха в процессе жизнедеятельности микроорганизмов, способных выживать за счет… …

    ГОСТ Р 54533-2011: Ресурсосбережение. Обращение с отходами. Руководящие принципы и методы утилизации полимерных отходов - Терминология ГОСТ Р 54533 2011: Ресурсосбережение. Обращение с отходами. Руководящие принципы и методы утилизации полимерных отходов оригинал документа: 3.3 анаэробное разложение (биогазификация): Биологическое разложение органических веществ… … Словарь-справочник терминов нормативно-технической документации

    У этого термина существуют и другие значения, см. Гниль. Гниющая рыба Гниение (аммонификация) процесс разложения азотсодержащих органических соединений (… Википедия

    Птичий помёт продукт жизнедеятельности птиц, выделяется из клоаки в момент дефекации. Ценное сильнодействующее удобрение. Обычно в качестве удобрения используется помет кур, уток, голубей и гусей. Максимально эффективным удобрением является … Википедия

    Биологический процесс преобразования мертвого органического материала микроорганизмами под воздействием кислорода и с малым количеством воды (аэробное разложение) или без кислорода и в присутствии большого количества воды (анаэробное разложение) … Экологический словарь

    МЕТАНОВОЕ БРОЖЕНИЕ - МЕТАНОВОЕ БРОЖЕНИЕ, анаэробное разложение органических веществ, связанное с выделением метана (см. Болотный газ). М. б. клетчатки осуществляется в природе в громадном масштабе. Оно происходит всюду, где скопляются в большом количестве раститель… … Большая медицинская энциклопедия

    Анаэробный ферментативный окислительно восстановит. процесс превращения органич. веществ, посредством к рого организмы получают энергию, необходимую для жизнедеятельности. По сравнению с процессами, идущими в присутствии О2, Б. эволюционно более… … Биологический энциклопедический словарь

Некоторые органические молекулы биомассы могут подвергаться анаэробному разложению в результате деятельности микроорганизмов. Основные продукты распада - диоксид углерода, метан и большое чис­ло микробных клеток. В природе этот процесс протекает в гнилостной среде. С прошлого века его использовали для обработки больших коли­честв шлама (осадка сточных вод). Главное преимущество этого мето­да - сокращение числа и обезвоживание твердых частиц стока, а также снижение количества твердых частиц вторичного отстоя очистительных установок. Только крупные канализационно-очистные сооружения ис­пользуют выделившийся метан как источник энергии; небольшие очист­ные сооружения, имеющие реакторы, могут сжигать газ или использо­вать его для подогрева самих реакторов. Из 5000 канализационно-очист - ных сооружений в Великобритании только около 300 имеют реакторы ; с появлением фирм, поставляющих готовые реакторы, это число стало увеличиваться. За последние годы была предложена технология удаления навоза на крупных предприятиях интенсивного животновод­ства; удаления стоков с предприятий, занимающихся переработкой биологических продуктов, например переработкой продуктов питания; превращения биомассы в энергию. Эта технология - одна из наиболее простых среди технологий получения топлива из биомассы. В результа­те эта технология особенно пропагандировалась для использования в странах третьего мира, где устанавливается большое число реакторов.

Химия. Среди различных категорий углеродсодержащих соединений биомассы разложение углеводов наиболее важное, и этот процесс в до­статочной мере исследован. Липиды и жиры, белки, а также другие азо­тистые соединения также катаболизируются. Биомассу могут разлагать различные микроорганизмы. Организмы, участвующие в разложении полисахаридов, делятся на две группы. В первую группу входят орга­низмы, осуществляющие гидролиз и превращение биомассы в низкомо­лекулярные карбоновые кислоты и водород. Вторая группа превращает продукты первой реакции в метан и диоксид углерода.

Скорость гидролиза полисахаридов зависит от их типа. Как было показано в предыдущем разделе, крахмал гидролизуется относительно легко, в то время как целлюлоза в сочетании с лигнином может разла­гаться очень медленно или не разлагаться совсем. Образовавшиеся моно­сахариды, например глюкоза, подвергаются дальнейшему разложению под действием ферментов до пируватов, а затем - до различных про­дуктов, основными из которых являются уксусная кислота и водород. Затем под действием других микроорганизмов происходит превращение этих продуктов в диоксид углерода и метан:

- [С6Н10О5]и->иС6Н12О6 ->2иСН3СОСООН + 2ИН2;

СН3С0С00Н + Н20->СН3С00Н + С02+2Н2;

2СН3СООН + 4Н2 -> ЗСН4 + С02 + 2Н20.

Метаногенные организмы очень легко подвергаются самоотравле­нию, в результате чего прекращается рост и происходит накопление Диоксида углерода, водорода, ацетатов и пропионатов.

Белки разлагаются в реакторах до аминокислот и олигопептидов, которые могут дезаминироваться до аммиака или войти в состав живой биомассы. Может также произойти расщепление небелковых азотистых соединений до кислот, диоксида углерода и аммиака.

Жиры, по-видимому, расщепляются вследствие гидролиза на гли­церол и жирные кислоты. Уксусная кислота и водород, образовавшиеся в результате разложения жирных кислот, превращаются в метан под действием меганогенных бактерий:

Триглицерид + Н20 -> СН3 - (СН2СН2) п - СООН + глицерол;

СН3 - (СН2СН2) п - СООН + 2иН20 (и + 1)СН3СООН + 2иН2.

Технология. Современная очистная установка может быть вмести­мостью от 500 до 4500 м3. Крупные емкости строятся из бетона и стали. Стальные емкости покрывают изоляционным материалом^ а поверх­ность, находящуюся в контакте с содержимым реактора, - эпоксидной смолой или аналогичным материалом. Содержимое перемешивают с по­мощью крыльчатки или винтового насоса, расположенных в емкости, а также путем" прокачки жидкости через внешний обводной трубопровод или путем повторной циркуляции отходящих газов. Перемешивание и нагрев часто чередуются или осуществляются одновременно; переме­шивание служит в основном для предотвращения образования поверх­ностных корок, особенно при обработке сельскохозяйственных отходов. Нагревание необходимо потому, что при умеренной температуре окру­жающей среды реакция протекает слишком медленно; нагрев до 30- 35 °С одновременно обеспечивает высокую скорость реакции и в то же время позволяет избежать чрезмерных расходов. Реактор должен рабо­тать по возможности непрерывно, так как прерывистая работа малоэф­фективна. Для обеспечения непрерывной подачи материала устанавли­вается специальная емкость, а для отвода используется уровень. Не­большие очистные сооружения часто имеют систему загрузки партиями (при наличии первичных и вторичных сточных осадков). Время нахож­дения жидкости в реакторе обычно составляет от 10 до 30 дней; в слу­чае трудносбраживаемых материалов и при температурах, ниже опти­мальных, эти сроки могут увеличиваться до нескольких месяцев. Реак - юры для навоза, других органических отходов и растительных остатков мало отличаются от систем, описанных выше. Поскольку стоимость ре­акторов для отбросов и сточных вод при проектировании их только для биотоплива крайне высокая, был предложен ряд более дешевых вариантов, например резинопластиковые надувные емкости, емкости, вырытые в земле и выстланные специальными материалами, и т. д. Такие варианты должны рассматриваться как экспериментальные, так как их срок службы значительно короче, чем срок службы более прочных и надежных систем, описанных выше.

В таблице 29 показаны выход, продуктивность и степень превраще­ния сырья при анаэробном разложении биомассы. Цифры представляют собой типичные значения, взятые из литературы; совершенно ясно, что все три параметра невысоки по сравнению с другими методами обога­щения биомассы. Наиболее легко превращаемым материалом является навоз нежвачных животных, а также легкогидролизуемый крахмал, белки и моносахариды. Растительные остатки, отходы целлюлозы и на­воз жвачных трудно разлагаются и требуют длительного нахождения в реакторе. Загрузка реактора зависит от типа материала; обычно посту­пающий материал содержит 3 % твердых частиц при максимальном их содержании 5 %. Были сконструированы реакторы для более концентри­рованного материала, однако здесь возникает проблема с перекачкой. Разлагаемая часть отходов (летучие твердые частицы) может составлять до 90 % общего количества твердых частиц, но обычно их доля составля­ет около 70 %.

Были предложены и испытаны другие типы реакторов (автокла­вов) - клеточно-рециркуляционный (контактный) реактор, анаэробные фильтры, реакторы с псевдосжиженным слоем и с восходящим взвешен­ным слоем осадков. Последний тип получил распространение, так как флокулированная биомасса остается в реакторе, сток является сравни­тельно чистым, а закачка сырья, служащего пищей микроорганизмам, проводится в основание реактора. При такой конструкции время на­хождения жидкости в реакторе значительно короче, однако эта конст­рукция пригодна только для обработки растворов и суспензий с низким содержанием органического вещества. Такая технология больше под­ходит для очистки сточных вод, чем для производства биотоплива.

Хранение биогаза обычно считается крайне дорогостоящим. Стои­мость газометров может в 4 раза превышать капитальные затраты на строительство самого реактора, поэтому газ должен быть или. немедлен­но использован, или удален. Газ используется прежде всего для нагрева - іния реактора до рабочей температуры. В Великобритании это требуется. делать круглый год, и зимой часто возникает необходимость дополни­тельного подогрева о использованием природного "или сжиженного неф­тяного газа. При наличии излишков биогаза последний может быть ис­пользован в силовых установках или в качестве топлива для двигате­лей. Для нагрева автоклавов могут также быть использованы вода, охлаждающая генераторы, или выделившаяся теплота. Состав биогаза (табл. 30) делает его малопригодным для подобного использования, так как он высокоагрессивен и приводит к разрушению большинства обычных насосов и трубопроводов. Сероводород способствует коррозии двигателя и должен быть удален; диоксид углерода и влага, содержа­щаяся в газе, снижают ценность топлива для двигателей внутреннего сгорания, которые не будут работать на смесях, содержащих более

Таблица 30. Состав газа, выделяющегося при анаэробном разложении

TOC \o "1-3" \h \z Метан 20-80

Двуокись углерода 15 - 16

Сероводород До 1

45% С02. Однако теплотворная способность биогаза обычно достаточна для использования его в модифицированных бойлерах, дизельных и карбюраторных двигателях, устанавливаемых, в частности, на крупных очистных сооружениях. Для транспортных средств необходимы ком­прессоры для снижения объема газа до приемлемого уровня.

Опасности, связанные с использованием биогаза. Следует упомя­нуть о двух важных обстоятельствах, связанных с подготовкой и ис­пользованием биогаза при самостоятельном его изготовлении. Во-пер­вых, смесь метана с воздухом взрывоопасна, и, во-вторых, что более серьезно, сероводород, присутствующий в биогазе, крайне токсичен. В промышленных условиях принимаются соответствующие меры без­опасности, однако недостаточно осторожное обращение с этим газом может оказаться роковым.

Удаление сброженного осадка. Заключительной проблемой, связан­ной как с использованием энергии, так и с охраной окружающей среды, является удаление осадка из автоклава, объем которого может дости­гать 50-60% исходного количества твердых частиц; что касается ком­мунальных отходов, то этот объем составляет 10 - 15%. Там, где воз­можно, эти осадки вносят в почву как удобрения, правда, использовать их на тяжелых глинах и заболоченных почвах не рекомендуется. Воз­можно, возникнет необходимость транспортировки сброженных осад­
ков в места отсыпки грунта и к морю. Для сокращения транспортных расходов используется отстаивание, коагуляция и другие методы обез­воживания. Содержание меди, цинка и других токсичных металлов в сброженном осадке затрудняет его использование в качестве удобрения. Имеются предложения по переработке осадка в корма для животных; технически это осуществимо. Были проведены некоторые эксперименты по включению осадка в корма, однако сомнительно, чтобы это соответ­ствовало критериям, определяющим требования к здоровью животных и вкусовым качествам корма. "Экстрагирование и очистка белкового компонента осадка, по-видимому, нерентабельны.

Места отсыпки грунта. Основная масса городских отходов в разви­тых странах удаляется путем их транспортировки в места отсыпки грун­та, где находятся свалки мусора. Эти свалки представляют собой гигант­ский биореактор, загруженный сырьем при фактически нулевой стои­мости. Метан, медленно образующийся в биомассе, может быть собран и использован аналогично тому, как это имеет место в обычных реакто­рах. Экономика этого процесса будет рассмотрена позднее; по имею­щимся данным, она значительно более благоприятна, чем при использо­вании реакторов интенсивного типа.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

В состав целлюлозы входит более 50% всего органического углерода

Именно разложение целлюлозы обеспечивает возврат углекислого газа в атмосферу

Разложение происходит путем ферментативного гидролиза в несколько стадий.

Под действие фермента целлюлазы нерастворимая в воде целлюлоза превращается в целлобиозу. Далее целлобиоза ферментом бетта-гликозидазой расщипляется до глюкозы

В аэробных условиях глюкоза окисляется до углекислого газа и воды, а в анаэробных сбраживается с обр органических кислот (уксусная, янтарная, молочная, муравьиная), этилового спирта и газов (углекислый и водород)

Аэробы в кислых лесных почвах, разложение лесной подстилки ведут грибы (р. Триходерма, хаетомиум, фузариум, пеницилум) в степных и луговых миксобактерии (архангиум и полиангиум), цитофаги (цитофага, спороцитофага) бактерии (вибрио, ахромобактер, псевдомонас, бациллюс), актиномицеты (стрептомицеты)

Анаэробы – только бактерии (клостридиум омелянского –выделен олелянским в 1902г. Тонкая длинная палочка, спора на конце клетки-барабанная палочка, температура оптимум при 30-40; клостридиум термоцеллум-термофил при температуре 60-65) в кишечнике у жвачных животных руминококкус флавефацеис и клостридиум целлобиопарум

К особенностям цикла углерода можно отнести ведущую сопряженную роль живых организмов в его реакциях, в первую очередь фотосинтезирующих организмов (растений и микроорганизмов), образующих органическое вещество (продукция), и микроорганизмов, разлагающих его и возвращающих СО2 в круговорот углерода (деструкция). Процессы минерализации органического вещества происходят как в аэробных, так и в анаэробных (метаногенез) условиях.

Круговорот углерода начинается с фиксации СО2 зелеными растениями и автотрофными микроорганизмами

Образовавшиеся в процессе фото- и хемосинтеза углеводы или другие углеродсодержащие органические соединения частично используются этими же организмами для получения энергии, при этом СО2 (продукт реакций окисления) выделяется в среду. Часть фиксированного растениями углерода потребляется человеком и животными, которые выделяют его в форме СО2 в процессе дыхания. Углерод, образующийся в результате разложения отмерших растений и животных, окисляется до СО2 и тоже возвращается в атмосферу.

Ведущая роль в возвращении углерода в атмосферу принадлежит микроорганизмам. В процессе дыхания и брожения они разлагают самые разнообразные органические вещества. Более доступными являются углеродсодержащие соединения, растворимые в воде (углеводы, спирты и др.). Но в естественных условиях – в почве и воде – в гораздо большем количестве встречаются труднорастворимые соединения углерода, такие как крахмал, пектиновые вещества, целлюлоза, лигнин. В них сосредоточена основная масса углерода. Разложение их начинается с гидролиза, в результате чего образуются более простые соединения типа углеводов.

Дальнейшее превращение данных соединений осуществляется в реакциях дыхания или брожения.

В аэробных условиях очевидна связь между процессами образования органического углерода, выделения О2 и потребления СО2

Необходимо обратить внимание и на то, что примерно 1 % минерализованного углерода поступает в биосферу в виде метана биогенного происхождения. Это количество постоянно возрастает, что сказывается и на увеличении в атмосфере содержания так называемых парниковых газов.

CO2 фиксируется автотрофами->С органический (растворимые-гемицеллюлоза, сахара; нераств-крахмал, пектин, смолы, воска, целлюлоза, пектин разлагается пектинэстеразой на протопектин и пектиновую кислоту; особо трудно растворимые-лигнин –разлагают псевдомонады, артробактер до простых ароматич соед. фермент-полифенолоксидаза)->мономеры->метаногенные археи CH4 ->метилатрофные бактерии (метанол до CO2)->CO2

Молочнокислое брожение - процесс анаэробного окисления углеводов , конечным продуктом при котором выступает молочная кислота .

Типы молочнокислого брожения:

Гомотерментативное – при котором из глюкозы образуется только молочная кислота.С6Н12О6=2СН3СНОНСООН

Гетероферментативное - когда из глюкозы кроме молочной к-ты получаются этанол и диоксид углерода.С6Н12О6СН3СНОНСООН + СН3СН2ОН+СО2

Брожение, вызываемое бифидобактериями – бифидоброжение , при котором из глюкозы образуется ацетат и лактат.2С6Н12О6=3СН3СООН+2СН3СНОНСООН

Молочнокислое брожение используется для консервации продуктов питания (за счет ингибирования роста микроорганизмов молочной кислотой и понижения рН) с целью длительного сохранения (пример- квашение овощей, сырокопчение), приготовлении кисломолочных продуктов (кефира , ряженки , йогурта , сметаны ), силосовании растительной массы, а также биотехнологического способа производства молочной кислоты.

22. масляно кислое брожение .

Возбудитель - строгие аэробы, подвижные палочки с клостридиальным или плектридиальным типом спорообразования. Подразделяют на истинное (брожение глюкозы, крахмала), ацетонобутиловое и брожение пектиновых в-в. Маслянокислые бактерии широко распростронены в почве (в 90% почвенных образцов), навозе, загрязненых водоемах, на разлагающихся растительных остатках, в молоке,на поверхности растений и др. Энергетическим материаломдля масленнокислых бактерий служит крохмал, водорастворимые углеводы типа декстринов, ди- и моносахоров, орг кислоты, характерная особенность бактерий - способность накапливать в клетках гранулезу перед образованием спор. Предсатвители - clostridium butyricum. Масленокислое брожение нчинается с трмнсформации сахаров в пируват по пути Эмбдена-Мейергофа-Парнаса. Конецные продукты из пирувата образуются в цепи последовательных реакций, катализируемый несколькими верментными системами. Среди масленокислых бактерие есть мезофильные и термофильные формы. Кроме того, род Clostridium включает и патогенние, и сапрофитные виды. Маслянокислое брожение - не всегда желательный процесс. Например, при его развитии в заквашиваемых кормах белковая часть корма разлагается, а накопившаяся масляная кислота придает продукту неприятный запах. Вместе с тем для некоторых промышленных требуется чистая масляная кислота. Ее получают на заводах, спациально сбраживая подготовленные среды чистой культурной маслянокислых бактерий. Образовавшуюся кислоту отделяют и точищают химическим методом.

24. Аэробное и анаэробное разложение целлюлозы бактериями

Разложение целлюлозы в анаэробных условиях. В анаэробных усло виях целлюлозу расщепляют чаще всего мезофильные и термофильные клостридии. Термофильный вид Clostridium thermocellum растет на про стых синтетических средах, используя в качестве субстрата целлюлозу или целлобиозу, а в качестве источника азота-соли аммония; глюкозу и многие другие сахара эта бактерия не утилизирует. Продуктами сбра живания целлюлозы являются этанол, уксусная, муравьиная и молочная кислоты, молекулярный водород и С0 2 . Вне клеток целлюлоза расще пляется, вероятно, только до целлобиозы. К сходным продуктам приво дит сбраживание целлюлозы мезофильным видом Clostridium cellobioparum. Длинная палочкаBacillus dissolvens ведет себя подобно упомянутым выше видам Cytophaga: клетки этой бактерии тесно приле гают к волокнам целлюлозы и не выделяют в среду целлюлазы.

В аэробных условиях значительная роль в разложении целлюлозы принадлежит грибам. Они в этом отношении эффективнее бактерий, особенно в кислых почвах и при разложении целлюлозы, инкрустиро­ванной лигнином (древесины). Большую роль играют в этом процессе представители двух родов -Fusarium иChaetomium. Целлюлозу расще пляют также Aspergillus fumigatus, A. nidulans, Botrytis cinerea, Rhizoctoniasolani, Trichoderma viride, Chaetomium globosum и Myrothecium verrucaria. Три последних вида служат тест-организмами для выявления распада целлюлозы, а также при испытании средств, применяемых для пропитки различных материалов с целью предохранить их от действия микроор ганизмов, разлагающих целлюлозу. Грибы образуют целлюлазы, ко торые можно выделить из мицелия и из питательной среды.

Cytophaga и Sporocytophaga- аэробные бактерии, разлагающие цел люлозу. Их легче всего выделить обычным методом накопительной культуры в жидких средах. Эти два рода, близкие к миксобактериям, включают много видов. Об использовании целлюлозы миксобактериями и об их первичном воздействии на нее мало что известно. У них не удалось обнаружить ни внеклеточной целлюлазы, ни каких-либо про дуктов расщепления целлюлозы. Клетки этих бактерий тесно прилегают к волокнам целлюлозы, располагаясь параллельно оси волокна. По-ви димому, они гидролизуют целлюлозу лишь при тесном контакте с во локном, и продукты гидролиза тотчас же поглощаются. На агаре с цел люлозой колонии Cytophaga никогда не бывают окружены прозрачной зоной, в которой находились бы продукты ферментативного расщепле ния целлюлозы.



Читайте также: