Кладбище радиоактивных отходов. Способы и порядок захоронения радиоактивных отходов

По российскому законодательству ввоз ядерных отходов из-за рубежа запрещен. Однако этот запрет концерном «Росатом» не соблюдается. Ядерные материалы ввозятся на переработку под видом «ценного сырья». В результате на территории России остается практически все «ценное сырье», ввозимое «на переработку».

Активисты Гринпис Франции задержали отправку ОГФУ в Россию - они разобрали около 30 метров железнодорожного полотна на пути между ядерными объектами Трикатсин и Пьерлатте.
6 апреля 2010 год

В случае с обедненным ураном, например, стоимость ввозимого «ценного сырья» равняется стоимости туалетной бумаги. Если это «ценное сырье», почему никто, кроме Росатома его не скупает?

Не решив проблемы со своими отходами Росатом, активно ищет пути для ввоза зарубежных. Зарубежные компании охотно идут навстречу Росатому, так как решить проблему радиоактивных отходов легче отправив их в другую страну.

Насколько это отвечает национальным интересам и мнению россиян четко показывают соцопросы - свыше 90% граждан России против ввоза чужих ядерных материалов под каким бы то ни было предлогом.

Ввоз отработавшего ядерного топлива

Отработавшее ядерное топливо (ОЯТ) — это чрезвычайно опасный, высокорадиоактивный «коктейль» из огромного числа осколочных элементов, различных изотопов урана, плутония, а также других трансурановых элементов и продуктов их распада.

В России уже накоплено около 20 тысяч тонн собственного ОЯТ. Не решив проблемы с собственными отходами, Росатом берется «убирать» за всей планетой.

До июля 2001 года российское законодательство разрешало ввоз ОЯТ с зарубежных АЭС только с целью переработки с последующим возвратом продуктов переработки включая высокоактивные отходы. Но сама транспортировка ОЯТ несет значительные экологические риски, а технологии переработки ОЯТ завершаются образованием большого количества новых радиоактивных отходов. При этом их большая часть отходов выбрасывается в окружающую среду, а оставшаяся часть должна возвращаться в страну происхождения ОЯТ.

6 июня 2001 года Государственная Дума в третьем чтении приняла закон о внесении изменений в статью 50 Закона РСФСР «Об охране окружающей природной среды», которым было разрешено оставлять все продукты переработки ОЯТ на территории России.

Но самое главное, новый закон разрешил «ввоз в Российскую Федерацию из иностранных государств облученных тепловыделяющих сборок ядерных реакторов для осуществления временного технологического хранения и (или) их переработки». То есть, этот закон грозит России превращением в международную ядерную свалку. Россия — единственное государство, чьи законы позволяют импортировать ядерные отходы для хранения. В качестве основного поставщика отработавшего ядерного топлива рассматриваются атомные станции, построенные с помощью США в других странах: в Швейцарии, Южной Корее, Тайване (Китай).

Согласно социологическим опросам, 92% россиян против ввоза иностранного ОЯТ.

Гринпис требует немедленно отказаться от переработки и транспортировки ОЯТ.

Ввоз урановых отходов

Российская Федерация — единственная страна в мире, принимающая обедненный уран из-за рубежа в промышленных масштабах.

В мире накоплены огромные запасы обедненного урана. Только в России его количество исчисляется сотнями тысяч тонн (порядка 700 тысяч тонн). Обедненный уран хранится в виде токсически опасного вещества — гексафторида урана (ОГФУ). До сих пор не разработана промышленная схема полной утилизации ОГФУ, а стоимость окончательного захоронения урана является довольно высокой.

С начала 70-х годов ХХ века по 2010 год западноевропейские компании ввозили в Россию отходы урановой обогатительной промышленности и продукты переработки ОЯТ. Это делалось, чтобы избежать высоких расходов на их хранение и утилизацию у себя на родине. Государственная корпорация «Росатом», а точнее уполномоченное предприятие — ВОАО «Техснабэкспорт», покупало это «ценное» энергетическое сырье по цене туалетной бумаги (0,6 долларов за кг, что более чем в 100 раз ниже стоимости обычного урана).

Символическая цена контрактов — доказательство того, что на территории России фактически создается система международных могильников ядерных отходов. После дообогащения 90% отходов оставалось в России навечно. Россию была превращена в свалку иностранных отходов.

С 2010 года главные поставщики обедненного урана компании URENCO и AREVA прекратили поставку ядерных отходов в Россию. Новые контракты заключаться не будут.

Во многом этого удалось добиться благодаря действиям Гринпис, наших сторонников и коллег из других организаций.

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

В 20 веке безостановочный поиск идеального источника энергии, казалось бы завершился. Этим источником стали ядра атомов и реакции, происходящие в них - во всем мире началась активная разработка ядерного оружия и строительство атомных электростанций.

Но планета быстро столкнулась с проблемой – переработки и уничтожения ядерных отходов. Энергия атомных реакторов несет в себе массу опасностей, так же как и отходы данной отрасли. До сих пор тщательно проработанной технологии переработки не существует, в то время как сама сфера активно развивается. Поэтому безопасность зависит в первую очередь от правильной утилизации.

Определение

Ядерные отходы содержат в себе радиоактивные изотопы определенных химических элементов. В России, согласно определению, данному в ФЗ №170 «Об использовании атомной энергии» (от 21 ноября 1995 года), дальнейшее использование таких отходов не предусматривается.

Главная опасность материалов заключается в излучении гигантских доз радиации, губительно действующей на живой организм. Последствиями радиоактивного воздействия становятся генетические нарушения, лучевая болезнь и смерть.

Карта классификаций

Основным источником ядерных материалов в России являются сфера атомной энергетики и военные разработки. Все отходы ядерного производства имеют три степени радиации, знакомые многим еще из курса физики:

  • Альфа - излучающие.
  • Бета - излучающие.
  • Гамма - излучающие.

Первые считаются самыми безобидными, так как дают неопасный уровень радиации, в отличие от двух других. Правда, это не мешает им входить в класс наиболее опасных отходов.


В целом, карта классификаций ядерных отходов в России делит их на три вида:

  1. Твердый ядерный мусор. К нему относится огромное количество материалов технического обслуживания в сферах энергетики, одежда персонала, мусор, скапливающийся в ходе работы. Такие отходы сжигают в печах, после чего пепел смешивается со специальной цементной смесью. Ее заливают в бочки, запаивают и отправляют в хранилище. Захоронение подробно описано ниже.
  2. Жидкие. Процесс работы атомных реакторов невозможен без использования технологических растворов. Кроме того, сюда относится вода, которую применяют для обработки спец костюмов и мытья работников. Жидкости тщательно выпаривают, а дальше происходит захоронение. нередко перерабатываются и используются в качестве топлива для атомных реакторов.
  3. Элементы конструкции реакторов, транспорта и средств технического контроля на предприятии составляют отдельную группу. Их утилизация - самая дорогостоящая. На сегодняшний день существует два выхода: установка саркофага или демонтаж с его частичной дезактивацией и дальнейшее отправление в хранилище на захоронение.

Карта ядерных отходов в России также определяет низкоактивные и высокоактивные:

  • Низкоактивные отходы — возникают в процессе деятельности лечебных учреждений, институтов и исследовательских центров. Здесь радиоактивные вещества применяются для проведения химических тестов. Уровень радиации, излучаемой этими материалами, очень низок. Правильная утилизация позволяет превратить опасный мусор в обычный приблизительно за несколько недель, после чего его можно уничтожить как обычные отходы.
  • Высокоактивные отходы - это отработанное топливо реакторов и материалы, применяемые в военной промышленности для разработки ядерного оружия. Топливо на станциях представляет собой специальные стержни с радиоактивным веществом. Реактор функционирует примерно 12 — 18 месяцев, после чего топливо необходимо менять. Объем отходов при этом просто колоссальный. И эта цифра растет во всех странах, развивающих сферу атомной энергетики. Утилизация высокоактивных отходов должна учитывать все нюансы, чтобы избежать катастрофы для окружающей среды и человека.

Переработка и утилизация

На данный момент существует несколько методов утилизации ядерных отходов. Все они имеют свои преимущества и недочеты, но как ни крути, не позволяют полностью избавиться от опасности радиоактивного воздействия.

Захоронение

Наиболее перспективный метод утилизации, который особенно активно применяется в России. Сначала происходит процесс витрификации или «остекловывания» отходов. Отработавшее вещество кальцинируют, после чего в смесь добавляется кварц, и такое «жидкое стекло» вливается в специальные цилиндрические формы из стали. Полученный стеклянный материал устойчив к воздействию воды, что уменьшает возможность попадания радиоактивных элементов в среду.

Готовые цилиндры заваривают и тщательно моют, избавляясь от малейшего загрязнения. Далее они отправляются в хранилище на очень длительное время. Хранилище устраивают на геологических устойчивых территориях, чтобы хранилище не было повреждено.

Геологическое захоронение осуществляют на глубине более 300 метров таким образом, чтобы в течение долгого времени отходы не нуждались в дальнейшем обслуживании.

Сжигание

Часть ядерных материалов, как уже говорилось выше, представляет собой непосредственные результаты производства, а своего рода побочный мусор в сфере энергетики. Это материалы, в ходе производства подвергшиеся облучению: макулатура, дерево, одежда, бытовой мусор.

Все это сжигается в специально спроектированных печах, позволяющих минимизировать уровень токсичных веществ в атмосферу. Пепел, среди прочих отходов, подвергается цементированию.

Цементирование

Захоронение (один из способов) ядерных отходов в России путем цементирования – одна из самых распространенных практик. Суть заключается в помещении облученных материалов и радиоактивных элементов в специальные контейнеры, которые затем заливают специальным раствором. В состав такого раствора входит целый коктейль из химических элементов.

В результате он практически не подвергается воздействию внешней среды, что позволяет достичь практически неограниченного срока. Но стоит сделать оговорку, что подобное захоронение возможно только для утилизации отходов среднего уровня опасности.

Уплотнение

Давняя и достаточно надежная практика, нацеленная на захоронение и уменьшение объема отходов. Она не применяется для переработки основных топливных материалов, но позволяет обработать другие отходы низкого уровня опасности. В данной технологии применяются гидравлические и пневматические прессы с низкой силой давления.

Повторное применение

Использование радиоактивного материала в области энергетики происходит не в полной мере – в силу специфики активности данных веществ. Отработавшие свое, отходы все еще остаются потенциальным источником энергии для реакторов.

В современном мире и тем более в России ситуация с энергетическими ресурсами довольно серьезная, и потому вторичное использование ядерных материалов в качестве топлива для реакторов уже не кажется невероятным.

Сегодня существуют методы, позволяющие применять отработавшее сырье для применения в сферах энергетики. Радиоизотопы, содержащиеся в отходах, используют для обработки пищевых продуктов и в качестве «батарейки» для работы термоэлектрических реакторов.

Но пока технология еще находится в развитии, и идеального метода переработки не найдено. Тем не менее, переработка и уничтожение ядерных отходов позволяет частично разрешить вопрос с подобным мусором, используя его в качестве топлива для реакторов.

К сожалению в России подобный метод избавления от ядерного мусора практически не развивается.

Объемы

В России во всем мире объемы ядерных отходов, отправляющихся на захоронение, составляют десятки тысяч кубометров ежегодно. Каждый год европейские хранилища принимают около 45 тысяч кубометров отходов, а в США такой объем поглощает лишь один полигон в штате Невада.

Ядерные отходы и работы связанные с ними за рубежом и в России – это деятельность специализированных предприятий, снабженных качественной техникой и оборудованием. На предприятиях отходы подвергаются различным способам обработки, описанным выше. В результате удается уменьшить объем, снизить уровень опасности и даже использовать некоторый мусор в сфере энергетики как топливо для атомных реакторов.

Мирный атом давно доказал, что все не так просто. Область энергетики развивается, и будет развиваться. То же можно сказать и о военной сфере. Но если на выброс других отходов мы иногда закрываем глаза, неправильно утилизированные ядерный мусор может стать причиной тотальной катастрофы для всего человечества. Поэтому этот вопрос требует скорейшего решения, пока не поздно.

Радиоактивные отходы (РАО ) - отходы, содержащие радиоактивные изотопы химических элементов и не имеющие практической ценности.

Согласно российскому «Закону об использовании атомной энергии» (от 21 ноября 1995 года № 170-ФЗ) радиоактивные отходы (РАО) - это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается. По российскому законодательству, ввоз радиоактивных отходов в страну запрещен.

Часто путают и считают синонимами радиоактивные отходы и отработавшее ядерное топливо . Следует различать эти понятия. Радиоактивные отходы, это материалы, использование которых не предусматривается. Отработавшее ядерное топливо представляет собой тепловыделяющие элементы, содержащие остатки ядерного топлива и множество продуктов деления, в основном 137 Cs и 90 Sr , широко применяемые в промышленности, сельском хозяйстве, медицине и научной деятельности. Поэтому оно является ценным ресурсом, в результате переработки которого получают свежее ядерное топливо и изотопные источники.

Источники появления отходов

Радиоактивные отходы образуются в различных формах с весьма разными физическими и химическими характеристиками, такими, как концентрации и периоды полураспада составляющих их радионуклидов. Эти отходы могут образовываться:

  • в газообразной форме, как, например, вентиляционные выбросы установок, где обрабатываются радиоактивные материалы;
  • в жидкой форме, начиная от растворов сцинтилляционных счётчиков из исследовательских установок до жидких высокоактивных отходов, образующихся при переработке отработавшего топлива;
  • в твёрдой форме (загрязнённые расходные материалы, стеклянная посуда из больниц, медицинских исследовательских установок и радиофармацевтических лабораторий, остеклованные отходы от переработки топлива или отработавшего топлива от АЭС , когда оно считается отходами).

Примеры источников появления радиоактивных отходов в человеческой деятельности:

Работа с такими веществами регламентируются санитарными правилами, выпущенными Санэпиднадзором .

  • Уголь . Уголь содержит небольшое число радионуклидов, таких как уран или торий, однако содержание этих элементов в угле меньше их средней концентрации в земной коре.

Их концентрация возрастает в зольной пыли, поскольку они практически не горят.

Однако радиоактивность золы также очень мала, она примерно равна радиоактивности чёрного глинистого сланца и меньше, чем у фосфатных пород, но представляет известную опасность, так как некоторое количество зольной пыли остаётся в атмосфере и вдыхается человеком. При этом совокупный объём выбросов достаточно велик и составляет эквивалент 1000 тонн урана в России и 40000 тонн во всём мире.

Классификация

Условно радиоактивные отходы делятся на:

  • низкоактивные (делятся на четыре класса: A, B, C и GTCC (самый опасный);
  • среднеактивные (законодательство США не выделяет этот тип РАО в отдельный класс, термин в основном используется в странах Европы);
  • высокоактивные.

Законодательство США выделяет также трансурановые РАО. К этому классу относятся отходы, загрязненные альфа-излучающими трансурановыми радионуклидами, с периодами полураспада более 20 лет и концентрацией большей 100 нКи /г, вне зависимости от их формы или происхождения, исключая высокоактивные РАО . В связи с долгим периодом распада трансурановых отходов их захоронение проходит тщательнее, чем захоронение малоактивных и среднеактивных отходов. Также особое внимание этому классу отходов выделяется потому, что все трансурановые элементы являются искусственными и поведение в окружающей среде и в организме человека некоторых из них уникально.

Ниже приведена классификация жидких и твёрдых радиоактивных отходов в соответствии с «Основными санитарными правилами обеспечения радиационной безопасности" (ОСПОРБ 99/2010).

Одним из критериев такой классификации является тепловыделение. У низкоактивных РАО тепловыделение чрезвычайно мало. У среднеактивных оно существенно, но активный отвод тепла не требуется. У высокоактивных РАО тепловыделение настолько велико, что они требуют активного охлаждения.

Обращение с радиоактивными отходами

Изначально считалось, что достаточной мерой является рассеяние радиоактивных изотопов в окружающей среде , по аналогии с отходами производства в других отраслях промышленности . На предприятии «Маяк» в первые годы работы все радиоактивные отходы сбрасывались в близлежащие водоёмы. Вследствие чего загрязнёнными оказались теченский каскад водоёмов и сама река Теча .

Позже выяснилось, что за счёт естественных природных и биологических процессов радиоактивные изотопы концентрируются в тех или иных подсистемах биосферы (в основном в животных, в их органах и тканях), что повышает риски облучения населения (за счёт перемещения больших концентраций радиоактивных элементов и возможного их попадания с пищей в организм человека). Поэтому отношение к радиоактивным отходам было изменено.

1) Защита здоровья человека . Обращение с радиоактивными отходами осуществляется таким образом, чтобы обеспечить приемлемый уровень защиты здоровья человека.

2) Охрана окружающей среды . Обращение с радиоактивными отходами осуществляется таким образом, чтобы обеспечить приемлемый уровень охраны окружающей среды.

3) Защита за пределами национальных границ . Обращение с радиоактивными отходами осуществляется таким образом, чтобы учитывались возможные последствия для здоровья человека и окружающей среды за пределами национальных границ.

4) Защита будущих поколений . Обращение с радиоактивными отходами осуществляется таким образом, чтобы предсказуемые последствия для здоровья будущих поколений не превышали соответствующие уровни последствий, которые приемлемы в наши дни.

5) Бремя для будущих поколений . Обращение с радиоактивными отходами осуществляется таким образом, чтобы не налагать чрезмерного бремени на будущие поколения.

6) Национальная правовая структура . Обращение с радиоактивными отходами осуществляется в рамках соответствующей национальной правовой структуры, предусматривающей чёткое распределение обязанностей и обеспечение независимых регулирующих функций.

7) Контроль за образованием радиоактивных отходов . Образование радиоактивных отходов удерживается на минимальном практически осуществимом уровне.

8) Взаимозависимости образования радиоактивных отходов и обращения с ними . Надлежащим образом учитываются взаимозависимости между всеми стадиями образования радиоактивных отходов и обращения с ними.

9) Безопасность установок . Безопасность установок для обращения с радиоактивными отходами надлежащим образом обеспечивается на протяжении всего срока их службы.

Основные стадии обращения с радиоактивными отходами

  • При хранении радиоактивных отходов их следует содержать таким образом, чтобы:
    • обеспечивались их изоляция, охрана и мониторинг окружающей среды;
    • по возможности облегчались действия на последующих этапах (если они предусмотрены).

В некоторых случаях хранение может осуществляться главным образом по техническим соображениям, например, хранение радиоактивных отходов, содержащих в основном короткоживущие радионуклиды, в целях их распада и последующего сброса в санкционированных пределах, или хранение радиоактивных отходов высокого уровня активности до их захоронения в геологических формациях в целях уменьшения тепловыделения.

  • Предварительная обработка отходов является первоначальной стадией обращения с отходами. Она включает сбор, регулирование химического состава и дезактивацию и к ней может относиться период промежуточного хранения. Эта стадия очень важна, так как во многих случаях в ходе предварительной обработки представляется наилучшая возможность для разделения потоков отходов.
  • Обработка радиоактивных отходов включает операции, цель которых состоит в повышении безопасности или экономичности посредством изменения характеристик радиоактивных отходов. Основные концепции обработки: уменьшение объёма, удаление радионуклидов и изменение состава. Примеры:
    • сжигание горючих отходов или уплотнение сухих твёрдых отходов;
    • выпаривание , фильтрация или ионный обмен потоков жидких отходов;
    • осаждение или флокуляция химических веществ.

Капсула для радиоактивных отходов

  • Кондиционирование радиоактивных отходов состоит из таких операций, в процессе которых радиоактивным отходам придают форму, приемлемую для перемещения, перевозки, хранения и захоронения. Эти операции могут включать иммобилизацию радиоактивных отходов, помещение отходов в контейнеры и обеспечение дополнительной упаковки. Общепринятые методы иммобилизации включают отверждение жидких радиоактивных отходов низкого и среднего уровней активности путём их включения в цемент (цементирование) или битум (битумирование), а также остекловывание жидких радиоактивных отходов. Иммобилизованные отходы в свою очередь в зависимости от характера и их концентрации могут упаковываться в различные контейнеры, начиная от обычных 200-литровых стальных бочек до имеющих сложную конструкцию контейнеров с толстыми стенками. В многих случаях обработка и кондиционирование проводятся в тесной связи друг с другом.
  • Захоронение главным образом состоит в том, что радиоактивные отходы помещаются в установку для захоронения при соответствующем обеспечении безопасности без намерения их изъятия и без обеспечения долгосрочного наблюдения за хранилищем и технического обслуживания. Безопасность в основном достигается посредством концентрации и удержания, что предусматривает изоляцию надлежащим образом концентрированных радиоактивных отходов в установке для захоронения.

Технологии

Обращение со среднеактивными РАО

Обычно в ядерной индустрии среднеактивные РАО подвергаются ионному обмену или другим методам, целью которых является концентрация радиоактивности в малом объёме. После обработки уже гораздо менее радиоактивное тело полностью обезвреживают. Существует возможность использовать гидроксид железа в качестве флокулянта для удаления радиоактивных металлов из водных растворов. После абсорбции радиоизотопов гидроксидом железа полученный осадок помещают в металлический барабан, где он перемешивается с цементом, образуя твердую смесь. Для большей стабильности и долговечности бетон изготовляют из зольной пыли или печного шлака и портландцемента (в отличие от обычного бетона, который состоит из портландцемента, гравия и песка).

Обращение с высокоактивными РАО

Удаление малоактивных РАО

Перевозка опок с высокоактивными РАО на поезде, Великобритания

Хранение

Для временного хранения высокоактивных РАО предназначены резервуары для хранения отработанного ядерного топлива и хранилища с сухотарными бочками, позволяющие распасться короткоживущим изотопам перед дальнейшей переработкой.

Витрификация

Долговременное хранение РАО требует консервации отходов в форме, которая не будет вступать в реакции и разрушаться на протяжении долгого времени. Одним из способов достижения подобного состояния является витрификация (или остеклование). В настоящее время в Селлафилде (Великобритания) высокоактивные РАО (очищенные продукты первой стадии пурекс-процесса) смешивают с сахаром и затем кальцинируют. Кальцинирование подразумевает прохождение отходов через нагретую вращающуюся трубу и ставит целью испарение воды и деазотирование продуктов деления, чтобы повысить стабильность получаемой стекловидной массы.

В полученное вещество, находящееся в индукционной печи, постоянно добавляют измельченное стекло. В результате получается новая субстанция, в которой при затвердении отходы связываются со стеклянной матрицей. Это вещество в расплавленном состоянии вливается в цилиндры из легированной стали . Охлаждаясь, жидкость затвердевает, превращаясь в стекло, которое является крайне устойчивым к воздействию воды. По данным международного технологического общества, потребуется около миллиона лет, чтобы 10 % такого стекла растворилось в воде.

После заполнения цилиндр заваривают, затем моют. После обследования на предмет внешнего загрязнения стальные цилиндры отправляют в подземные хранилища. Такое состояние отходов остаётся неизменным в течение многих тысяч лет.

Стекло внутри цилиндра имеет гладкую чёрную поверхность. В Великобритании вся работа проделывается с использованием камер для работы с высокоактивными веществами. Сахар добавляется для предотвращения образования летучего вещества RuO 4 , содержащего радиоактивный рутений. На Западе к отходам добавляют боросиликатное стекло, идентичное по составу пирексу ; в странах бывшего СССР обычно применяют фосфатное стекло. Количество продуктов деления в стекле должно быть ограничено, так как некоторые элементы (палладий , металлы платиновой группы и теллур) стремятся образовать металлические фазы отдельно от стекла. Один из заводов по витрификации находится в Германии , там перерабатываются отходы деятельности небольшой демонстрационной перерабатывающей фабрики, прекратившей своё существование.

В 1997 году в 20 странах, обладающих большей частью мирового ядерного потенциала, запасы отработанного топлива в хранилищах внутри реакторов составляли 148 тыс. тонн, 59 % из которых были утилизированы. Во внешних хранилищах находилось 78 тыс. тонн отходов, из которых утилизировано 44 %. С учетом темпов утилизации (около 12 тыс. тонн ежегодно), до окончательного устранения отходов ещё достаточно далеко.

Геологическое захоронение

Поиски подходящих мест для глубокого окончательного захоронения отходов в настоящее время ведутся в нескольких странах; ожидается, что первые подобные хранилища вступят в эксплуатацию после 2010 года. Международная исследовательская лаборатория в швейцарском Гримзеле занимается вопросами, посвящёнными захоронению РАО. Швеция говорит о своих планах по прямому захоронению использованного топлива с использованием технологии KBS-3, после того, как шведский парламент счёл её достаточно безопасной. В Германии в настоящее время ведутся дискуссии о поисках места для постоянного хранения РАО, активные протесты заявляют жители деревни Горлебен региона Вендланд . Это место вплоть до 1990 года казалось идеальным для захоронения РАО благодаря своей близости к границам бывшей Германской демократической республики . Сейчас РАО находятся в Горлебене на временном хранении, решение о месте их окончательного захоронения пока не принято. Власти США выбрали местом захоронения Юкка-Маунтин, штат Невада , однако данный проект встретил сильное противодействие и стал темой жарких дискуссий. Существует проект создания международного хранилища высокоактивных РАО, в качестве возможных мест захоронения предлагаются Австралия и Россия . Однако власти Австралии выступают против подобного предложения.

Существуют проекты захоронения РАО в океанах, среди которых - захоронение под абиссальной зоной морского дна, захоронение в зоне субдукции , в результате чего отходы будут медленно опускаться к земной мантии , а также захоронение под природным или искусственным островом. Данные проекты имеют очевидные достоинства и позволят решить на международном уровне неприятную проблему захоронения РАО, но, несмотря на это, в настоящее время они заморожены из-за запрещающих положений морского права. Другая причина состоит в том, что в Европе и Северной Америке всерьёз опасаются утечки из подобного хранилища, что приведет к экологической катастрофе. Реальная возможность подобной опасности не доказана; тем не менее, запреты были усилены после сброса РАО с кораблей. Однако, в будущем о создании океанских хранилищ РАО всерьёз способны задуматься страны, которые не смогут найти других решений данной проблемы.

В 1990-х годах было разработано и запатентовано несколько вариантов конвейерного захоронения в недра радиоактивных отходов. Технология предполагалась следующая: пробуривается стартовая скважина большого диаметра глубиной до 1 км, внутрь опускается капсула, загруженная концентратом радиоактивных отходов весом до 10 т, капсула должна саморазогреваться и в форме «огненного шара» проплавлять земную породу. После заглубления первого «огненного шара» в ту же скважину должна опускаться вторая капсула, затем третья и т. д., создавая некий конвейер.

Повторное использование РАО

Ещё одним применением изотопам, содержащимся в РАО, является их повторное использование. Уже сейчас цезий-137 , стронций-90 , технеций-99 и некоторые другие изотопы используются для облучения пищевых продуктов и обеспечивают работу радиоизотопных термоэлектрических генераторов.

Удаление РАО в космос

Отправка РАО в космос является заманчивой идеей, поскольку РАО навсегда удаляются из окружающей среды. Однако у подобных проектов есть значительные недостатки, один из самых важных - возможность аварии ракеты-носителя. Кроме того, значительное число запусков и большая их стоимость делает это предложение непрактичным. Дело также усложняется тем, что до сих пор не достигнуты международные соглашения по поводу данной проблемы.

Ядерный топливный цикл

Начало цикла

Отходы начального периода ядерного топливного цикла - обычно полученная в результате извлечения урана пустая порода, испускающая альфа-частицы . Она обычно содержит радий и продукты его распада.

Главный побочный продукт обогащения - обеднённый уран, состоящий главным образом из урана-238, с содержанием урана-235 менее 0,3 %. Он находится на хранении в форме UF 6 (отвальный гексафторид урана) и может быть также переведен в форму U 3 O 8 . В небольших количествах обедненный уран находит применение в областях, где ценится его крайне высокая плотность, например при изготовлении килей яхт и противотанковых снарядов. Между тем, в России и за рубежом накопилось несколько миллионов тонн отвального гексафторида урана , планов по дальнейшему использованию которого в обозримой перспективе нет. Отвальный гексафторид урана может использоваться (вместе с повторно используемым плутонием) для создания смешанного оксидного ядерного топлива (которое может иметь спрос при условии строительства в стране в значительных количествах реакторов на быстрых нейтронах) и для разбавления высокообогащенного урана, входящего ранее в состав ядерного оружия . Это разбавление, называемое также обеднением, означает, что любая страна или группировка, получившая в своё распоряжение ядерное топливо, должна будет повторить очень дорогой и сложный процесс обогащения, прежде чем сможет создать оружие.

Окончание цикла

Вещества, в которых подошёл к концу ядерный топливный цикл (в основном это отработавшие топливные стержни), содержат продукты деления, испускающие бета- и гамма-лучи. Они также могут содержать актиноиды , испускающие альфа-частицы, к которым относятся уран-234 (234 U), нептуний-237 (237 Np), плутоний-238 (238 Pu) и америций-241 (241 Am), а иногда даже источники нейтронов, такие как калифорний-252 (252 Cf). Эти изотопы образуются в ядерных реакторах.

Важно различать обработку урана с целью получения топлива и переработку использованного урана. Использованное горючее содержит высокорадиоактивные продукты деления. Многие из них являются поглотителями нейтронов, получив, таким образом, название «нейтронных ядов». В конечном итоге их количество возрастает до такой степени, что, улавливая нейтроны, они останавливают цепную реакцию даже при полном удалении стержней-поглотителей нейтронов .

Достигшее этого состояния топливо необходимо заменить свежим, несмотря на по-прежнему достаточное количество урана-235 и плутония. В настоящее время в США использованное топливо отправляется на хранение. В других странах (в частности, в России, Великобритании, Франции и Японии), это топливо перерабатывается с целью удаления продуктов деления, затем после дообогащения возможно его повторное использование. В России такое топливо называется регенерированным. Процесс переработки включает работу с высокорадиоактивными веществами, а удалённые из топлива продукты деления - это концентрированная форма высокоактивных РАО, так же, как используемые в переработке химикаты.

Для замыкания ядерного топливного цикла предполагается использовать реакторы на быстрых нейтронах , который позволяет перерабатывать топливо, являющееся отходами работы реакторов на тепловых нейтронах .

К вопросу о распространении ядерного оружия

При работе с ураном и плутонием часто рассматривается возможность их использования при создании ядерного оружия. Активные ядерные реакторы и запасы ядерного оружия тщательно охраняются. Однако, высокоактивные РАО из ядерных реакторов могут содержать плутоний. Он идентичен плутонию, используемому в реакторах, и состоит из 239 Pu (идеально подходящего для создания ядерного оружия) и 240 Pu (нежелательный компонент, крайне радиоактивен); эти два изотопа очень тяжело разделить. Более того, высокоактивные РАО из реакторов полны высокорадиоактивных продуктов деления; впрочем, их большая часть - короткоживущие изотопы . Это означает, что возможно захоронение отходов, и через много лет продукты деления распадутся, уменьшив радиоактивность отходов и облегчив работу с плутонием. Более того, нежелательный изотоп 240 Pu распадается быстрее, чем 239 Pu, таким образом, качество сырья для создания оружия со временем растет (несмотря на уменьшение количества). Это вызывает споры о том, что с течением времени хранилища отходов могут превратиться в своеобразные «рудники плутония», из которых относительно легко можно будет добыть сырье для оружия. Против этих предположений говорит тот факт, что период полураспада 240 Pu составляет 6560 лет, а период полураспада 239 Pu - 24110 лет, таким образом, сравнительное обогащение одного изотопа относительно другого произойдет только через 9000 лет (это означает, что в течение этого времени доля 240 Pu в веществе, состоящем из нескольких изотопов, самостоятельно уменьшится вдвое - типичное превращение реакторного плутония в оружейный плутоний). Следовательно, «рудники оружейного плутония» если и станут проблемой, то только в очень отдаленном будущем.

Одно из решений этой проблемы - повторно использовать переработанный плутоний в качестве топлива, например, в быстрых ядерных реакторах. Однако само существование фабрик по регенерации ядерного топлива, необходимой для отделения плутония от других элементов, создает возможность для распространения ядерного оружия. В пирометаллургических быстрых реакторах получаемые отходы имеют актиноидную структуру, что не позволяет использовать их для создания оружия.

Переработка ядерного оружия

Отходы от переработки ядерного оружия (в отличие от его изготовления, которое требует первичного сырья из реакторного топлива), не содержат источников бета- и гамма-лучей, за исключением трития и америция. В них содержится гораздо большее число актиноидов, испускающих альфа-лучи, таких как плутоний-239, подвергающийся ядерной реакции в бомбах, а также некоторые вещества с большой удельной радиоактивностью, такие как плутоний-238 или полоний .

В прошлом в качестве ядерного заряда в бомбах предлагались бериллий и высокоактивные альфа-излучатели, такие как полоний. Сейчас альтернативой полонию является плутоний-238. По причинам государственной безопасности, подробные конструкции современных бомб не освещаются в литературе, доступной широкому кругу читателей.

Проверьте, нет ли рядом с вами АЭС, завода или НИИ атомной тематики, хранилища радиоактивных отходов или ядерных ракет.

Атомные электростанции

В настоящее время в России действуют 10 атомных электростанций и еще две строятся (Балтийская АЭС в Калининградской области и плавучая АЭС «Академик Ломоносов» на Чукотке). Подробнее о них можно прочитать на официальном сайте Росэнергоатома.

В то же время, атомные электростанции на пространстве бывшего СССР нельзя считать многочисленными. По состоянию на 2017 г. в мире эксплуатируются 191 АЭС, в том числе 60 в США, 58 в Европейском союзе и Швейцарии и 21 в Китае и Индии. В непосредственной близости от российского Дальнего Востока работают 16 японских и 6 южно-корейских АЭС. Весь список действующих, строящихся и закрытых АЭС, с указанием их точного расположения и технических характеристик, можно найти в Википедии.

Заводы и НИИ атомной тематики

Радиационно-опасными объектами (РОО), помимо АЭС, являются предприятия и научные организации атомной отрасли и судоремонтные заводы, специализирующиеся на атомном флоте.

Официальная информация по РОО по регионам России — на сайте Росгидромета, а также в ежегоднике «Радиационная обстановка на территории России и сопредельных государств» на сайте НПО «Тайфун».

Радиоактивные отходы


Радиоактивные отходы низкой и средней активности образуются в промышленности, а также в научных и медицинских организациях по всей стране.

В России их сбором, транспортировкой, переработкой и хранением занимаются дочерние предприятия Росатома — РосРАО и Радон (в Центральном регионе).

Кроме того, РосРАО занимается утилизацией радиоактивных отходов и отработавшего ядерного топлива со списанных атомных подводных лодок и кораблей ВМФ, а также экологической реабилитацией загрязненных территорий и радиационно-опасных объектов (таких, как бывший завод по переработке урана в Кирово-Чепецке).

Информацию об их работе в каждом регионе можно найти в экологических отчетах, опубликованных на сайтах Росатома, филиалов РосРАО, и предприятия Радон.

Военные атомные объекты

Среди военных атомных объектов наиболее экологически опасны, по-видимому, атомные подводные лодки.

Атомные подводные лодки (АПЛ) называются так потому, что работают на атомной энергии, за счет которой приводятся в действие двигатели лодки. Некоторые из АПЛ также являются носителями ракет с ядерными боеголовками. Однако известные из открытых источников крупные аварии на АПЛ были связаны с эксплуатацией реакторов или же с другими причинами (столкновение, пожар и др.), а не с ядерными боеголовками.

Атомные энергетические установки имеются также и на некоторых надводных кораблях ВМФ, таких как атомный крейсер «Петр Великий». Они также создают определенный экологический риск.

Информация по местам базирования АПЛ и атомных кораблей ВМФ показана на карте по данным открытых источников.

Второй тип военных атомных объектов — подразделения РВСН, имеющие на вооружении баллистические ядерные ракеты. Случаев радиационных аварий, связанных с ядерным боекомплектом в открытых источниках не обнаружено. Текущее расположение соединений РВСН показано на карте по информации Министерства обороны.

На карте нет пунктов хранения ядерного боезапаса (боеголовок ракет и авиабомб), которые также могут представлять экологическую угрозу.

Ядерные взрывы

В 1949-1990 годах в СССР была реализована обширная программа из 715 ядерных взрывов в военных и промышленных целях.

Испытания ядерного оружия в атмосфере

С 1949 по 1962 гг. СССР произвел 214 испытаний в атмосфере, в том числе 32 наземных (c наибольшим загрязнением окружающей среды), 177 воздушных, 1 высотный (на высоте более 7 км) и 4 космических.

В 1963 г. СССР и США подписали договор о запрете ядерных испытаний в воздухе, воде и космосе.

Семипалатинский полигон (Казахстан) — место испытания первой советской ядерной бомбы в 1949 г. и первого советского прототипа термоядерной бомбы мощностью 1,6 Мт в 1957 г. (он же был и самым крупным испытанием за историю полигона). Всего здесь было произведено 116 атмосферных испытаний, включая 30 наземных и 86 воздушных.

Полигон на Новой Земле — место беспрецедентной серии сверхмощных взрывов в 1958 и 1961-1962 гг. Всего было испытано 85 зарядов, включая самый мощный в мировой истории — «Царь-бомбу» мощностью 50 Мт (1961 г.). Для сравнения, мощность атомной бомбы, сброшенной на Хиросиму, не превышала 20 кт. Кроме того, в бухте Черная Новоземельского полигона изучались поражающие факторы ядерного взрыва на объекты флота. Для этого в 1955-1962 гг. были произведены 1 наземный, 2 надводных и 3 подводных испытания.

Ракетный испытательный полигон «Капустин Яр» в Астраханской области — действующий полигон российской армии. В 1957-1962 гг. здесь произвели 5 воздушных, 1 высотный и 4 космических испытания в ракетном исполнении. Максимальная мощность воздушных взрывов составляла 40 кт, высотного и космических — 300 кт. Отсюда же в 1956 г. была запущена ракета с ядерным зарядом 0,3 кт, упавшая и разорвавшаяся в Каракумах в районе г. Аральск.

На Тоцком полигоне в 1954 г. проводились военные учения, в ходе которых была сброшена атомная бомба мощностью 40 кт. После взрыва войсковым частям предстояло «взять» объекты, подвергшиеся бомбардировке.

Кроме СССР в Евразии ядерные испытания в атмосфере производил только Китай. Для этого использовался полигон Лобнор на северо-западе страны, примерно на долготе Новосибирска. В общей сложности в 1964-1980 гг. Китай произвел 22 наземных и воздушных испытания, включая термоядерные взрывы мощностью до 4 Мт.

Подземные ядерные взрывы

СССР осуществлял подземные ядерные взрывы с 1961 по 1990 гг. Изначально они были направлены на развитие ядерного оружия в связи с запретом проведения испытаний в атмосфере. С 1967 г. началось и создание ядерно-взрывных технологий в промышленных целях.

В общей сложности из 496 подземных взрывов 340 были произведены на Семипалатинском полигоне и 39 на Новой Земле. Испытания на Новой Земле в 1964-1975 гг. отличались высокой мощностью, включая рекордный (около 4 Мт) подземный взрыв в 1973 г. После 1976 г. мощность не превышала 150 кт. Последний ядерный взрыв на Семипалатинском полигоне был произведен в 1989 г., на Новой Земле — в 1990 г.

Полигон «Азгир» в Казахстане (вблизи российского г. Оренбурга) использовался для отработки промышленных технологий. С помощью ядерных взрывов здесь создавались полости в пластах каменной соли, а при повторных взрывах в них нарабатывались радиоактивные изотопы. Всего было произведено 17 взрывов мощностью до 100 кт.

За пределами полигонов в 1965-1988 гг. были выполнены 100 подземных ядерных взрывов в промышленных целях, в том числе 80 в России, 15 в Казахстане, по 2 в Узбекистане и Украине и 1 в Туркменистане. Их целью были глубокое сейсмозондирование для поиска полезных ископаемых, создание подземных полостей для хранения природного газа и промышленных отходов, интенсификация добычи нефти и газа, перемещение больших массивов грунта для строительства каналов и плотин, тушение газовых фонтанов.

Другие страны. Китай произвел 23 подземных ядерных взрыва на полигоне Лобнор в 1969-1996 гг., Индия — 6 взрывов в 1974 и 1998 гг., Пакистан — 6 взрывов в 1998 г., КНДР — 5 взрывов в 2006-2016 гг.

США, Великобритания и Франция производили все свои испытания за пределами Евразии.

Литература

Многие данные о ядерных взрывах в СССР являются открытыми.

Официальная информация о мощности, цели и географии каждого взрыва опубликована в 2000 г. в книге коллектива авторов Минатома России «Ядерные испытания СССР ». Здесь же приведена история и описание Семипалатинского и Новоземельского полигонов, первых испытаний ядерной и термоядерной бомб, испытания «Царь-бомбы», ядерного взрыва на Тоцком полигоне и другие данные.

Детальное описание полигона на Новой Земле и программы испытаний на нем можно найти в статье «Обзор советских ядерных испытаний на Новой Земле в 1955-1990 годах », а их экологических последствий — в книге «

Список атомных объектов, составленный в 1998 г. журналом «Итоги», на сайте Kulichki.com.

Предположительное расположение различных объектов на интерактивных картах

Проблема радиоактивных отходов является частным случаем общей проблемы загрязнения окружающей среды отходами человеческой деятельности. Одним из основных источников радиоактивных отходов (РАО) высокого уровня активности является атомная энергетика (отработанное ядерное топливо).

Сотни миллионов тонн радиоактивных отходов, образующихся в результате деятельности атомных электростанций (жидкие и твердые отходы и материалы, содержащие следы урана) накопились в мире за 50 лет использования атомной энергии. При нынешнем уровне производства количество отходов в ближайшие несколько лет может удвоиться. При этом ни одна из 34 стран с атомной энергетикой не знает сегодня решения проблемы отходов. Дело в том, что большая часть отходов сохраняет свою радиоактивность до 240 000 лет и должна быть изолирована от биосферы на это время. Сегодня отходы содержатся во "временных" хранилищах, или захораниваются неглубоко под землей. Во многих местах отходы безответственно сбрасываются на землю, в озера и океаны. Что касается глубокого подземного захоронения - официально признанного в настоящее время способа изоляции отходов, то со временем изменения русла водных потоков, землетрясения и другие геологические факторы нарушат изоляцию захоронения и приведут к заражению воды, почвы и воздуха.

Пока человечество не придумало ничего более разумного, чем простое хранение отработавшего ядерного топлива (ОЯТ). Дело в том, что когда АЭС с канальными реакторами только строились, планировалось, что использованные топливные сборки будут вывозиться на переработку на специализированный завод. Такой завод предполагалось построить в закрытом городе Красноярске-26. Чувствуя, что бассейны выдержки скоро переполнятся, а именно в бассейны временно помещаются извлекаемые из РБМК использованные кассеты, ЛАЭС решилась на строительство на своей территории хранилища отработанного ядерного топлива (ХОЯТ). В 1983 году выросло огромное здание, вмещающее целых пять бассейнов. Отработанная ядерная сборка представляет собой высокоактивное вещество, несущее смертельную опасность для всего живого. Даже на расстоянии она разит жестким рентгеновским излучением. Но самое главное, в чем и заключается ахиллесова пята атомной энергетики, опасной она будет оставаться еще на протяжении 100 тысяч лет! То есть весь этот период, с трудом поддающийся воображению, ОЯТ нужно будет хранить так, чтобы к нему не имела доступа ни то, что живая, но и неживая природа - ядерная грязь ни при каких условиях не должна попасть в окружающую среду. Заметим, что вся письменная история человечества меньше 10 тысяч лет. Задачи, возникающие при захоронении РАО, беспрецедентны в истории техники: люди никогда не ставили себе таких долговременных целей.

Интересный аспект проблемы состоит в том, что надо не только защищать человека от отходов, но одновременно защищать отходы от человека. За срок, отводимый на их захоронение, сменятся многие социально-экономические формации. Нельзя исключить, что в определенной ситуации РАО могут стать желанным объектом для террористов, мишенями для удара при военном конфликте и т.п. Понятно, что, рассуждая о тысячелетиях, мы не можем полагаться, скажем, на правительственный контроль и охрану -- невозможно предвидеть, какие изменения могут произойти. Может быть, лучше всего сделать отходы физически недоступными для человека, хотя, с другой стороны, это затруднило бы нашим потомкам дальнейшие меры безопасности.

Понятно, что ни одно техническое решение, ни один искусственный материал не может "работать" в течение тысячелетий. Очевидный вывод: изолировать отходы должна сама природная среда. Рассматривались варианты: захоронить РАО в глубоких океанических впадинах, в донных осадках океанов, в полярных шапках; отправлять их в космос; закладывать их в глубокие слои земной коры. В настоящее время общепринято, что оптимальный путь -- захоронение отходов в глубоких геологических формациях.

Понятно, что РАО в твердой форме менее склонны к проникновению в окружающую среду (миграции), чем жидкие РАО. Поэтому предполагается, что жидкие РАО будут вначале переводиться в твердую форму (остекловываться, превращаться в керамику и т.п.). Тем не менее, в России все еще практикуется закачка жидких высокоактивных РАО в глубокие подземные горизонты (Красноярск, Томск, Димитровград).

В настоящее время принята так называемая "многобарьерная" или "глубоко эшелонированная" концепция захоронения. Отходы сперва сдерживаются матрицей (стекло, керамика, топливные таблетки), затем многоцелевым контейнером (используемым для транспортировки и для захоронения), затем сорбирующей (поглощающей) отсыпкой вокруг контейнеров и, наконец, геологической средой.

Сколько стоит вывод из эксплуатации атомной станции? По разным оценкам и для разных станций, эти оценки колеблются от 40 до 100% капитальных затрат на строительство станции. Эти цифры теоретические, поскольку до сих пор станции полностью из эксплуатации не выводились: волна выводов должна начаться после 2010 года, так как срок жизни станций составляет 30-40 лет, а основное строительство их происходило в 70-80-х годах. То, что мы не знаем стоимости вывода реакторов из эксплуатации, означает, что эта "скрытая стоимость" не учитывается в стоимости электроэнергии, производимой атомными станциями. Это одна из причин кажущейся "дешевизны" атомной энергии.

Итак, мы попытаемся захоранивать РАО в глубокие геологические фракции. При этом нам поставлено условие: показать, что наше захоронение будет работать, как мы это планируем, на протяжении 10 тысяч лет. Посмотрим теперь, какие проблемы мы встретим на этом пути.

Первые проблемы встречаются на этапе выбора участков для изучения.

В США, например, ни один штат не хочет, чтобы общегосударственное захоронение размещалось на его территории. Это привело к тому, что усилиями политиков многие потенциально подходящие площади были вычеркнуты из списка, причем не на основании ночного подхода, а вследствие политических игр.

Как это выглядит в России? В настоящее время в России все еще можно изучать площади, не ощущая значительного давления местных властей (если не предлагать при этом размещать захоронение вблизи городов!). Полагаю, что по мере усиления реальной независимости регионов и субъектов Федерации ситуация будет смещаться в сторону ситуации США. Уже сейчас ощущается склонность Минатома переместить свою активность на военные объекты, над которыми практически нет контроля: например, для создания захоронения предполагается архипелаг Новая Земля (российский полигон № 1), хотя по геологическим параметрам это далеко не лучшее место, о чем еще будет речь дальше.

Но предположим, что первый этап позади и площадка выбрана. Надо ее изучить и дать прогноз функционирования захоронения на 10 тысяч лет. Тут появляются новые проблемы.

Неразработанность метода. Геология -- описательная наука. Отдельные разделы геологии занимаются предсказаниями (например, инженерная геология предсказывает поведение грунтов при строительстве и т.п.), но никогда еще перед геологией не ставилась задача предсказать поведение геологических систем на десятки тысяч лет. Из многолетних исследований в разных странах возникли даже сомнения, возможен ли вообще более или менее надежный прогноз на такие сроки.

Представим все же, что нам удалось выработать разумный план изучения площадки. Понятно, что для осуществления этого плана понадобится много лет: например, гора Яка в штате Невада изучается уже более 15 лет, но заключение о пригодности или непригодности этой горы будет сделано не ранее чем через 5 лет. При этом программа захоронения будет испытывать все возрастающее давление.

Давление внешних обстоятельств. В годы холодной войны на отходы не обращали внимания; они накапливались, хранились во временных контейнерах, терялись и т.п. Пример -- военный объект Хэнфорд (аналог нашего "Маяка"), где находится несколько сот гигантских баков с жидкими отходами, причем для многих из них не известно, что находится внутри. Одна проба стоит 1 миллион долларов! Там же, в Хэнфорде, примерно раз в месяц обнаруживаются закопанные и "забытые" бочки или ящики с отходами.

В целом за годы развития ядерных технологий отходов скопилось очень много. Временные хранилища на многих атомных станциях близки к заполнению, а на военных комплексах они часто находятся на грани выхода из строя "по старости" или даже за этой гранью.

Итак, проблема захоронения требует срочного решения. Осознание этой срочности становится все более острым, тем более что 430 энергетических реакторов, сотни исследовательских реакторов, сотни транспортных реакторов атомных подводных лодок, крейсеров и ледоколов продолжают непрерывно накапливать РАО. Но у людей, прижатых к стенке, не обязательно возникают лучшие технические решения, и возрастает вероятность ошибок. Между тем в решениях, связанных с ядерной технологией, ошибки могут очень дорого стоить.

Предположим, наконец, что мы истратили 10-20 миллиардов долларов и 15-20 лет на изучение потенциальной площадки. Пришло время принимать решение. Очевидно, идеальных мест на Земле не существует, и любое место будет иметь с точки зрения захоронения положительные и отрицательные свойства. Очевидно, придется решить, перевешивают ли положительные свойства отрицательные и обеспечивают ли эти положительные свойства достаточную безопасность.

Принятие решений и технологическая сложность проблемы. Проблема захоронения технически чрезвычайно сложна. Поэтому очень важно иметь, во-первых, науку высокого качества, а во-вторых, эффективное взаимодействие (как говорят в Америке, "интерфейс") между наукой и политиками, принимающими решения.

Российская концепция подземной изоляции РАО и отработанного ядерного топлива в многолетнемерзлых породах разработана в Институте промышленной технологии Минатома России (ВНИПИП). Она была одобрена Государственной экологической экспертизой Министерства экологии и природных ресурсов РФ, Минздравом РФ и Госатомнадзором РФ. Научная поддержка концепции проводится кафедрой мерзлотоведения Московского государственного университета. Следует заметить, что эта концепция уникальна. Ни в одной стране мира, насколько мне известно, вопрос о захоронении РАО в мерзлоте не рассматривается.

Основная идея такова. Помещаем тепловыделяющие отходы в мерзлоту и отделяем их от пород непроницаемым инженерным барьером. За счет тепловыделения мерзлота вокруг захоронения начинает подтаивать, но через какое-то время, когда тепловыделение снизится (вследствие распада короткоживущих изотопов), породы снова промерзнут. Поэтому достаточно обеспечить непроницаемость инженерных барьеров на то время, когда мерзлота будет протаивать; после промерзания миграция радионуклидов становится невозможной.

Неопределенность концепции. С этой концепцией связано, по меньшей мере, две серьезных проблемы.

Во-первых, концепция предполагает, что промерзшие породы непроницаемы для радионуклидов. На первый взгляд это кажется разумным: вся вода замерзшая, лед обычно неподвижен и не растворяет радионуклиды. Но если внимательно поработать с литературой, то оказывается, что многие химические элементы довольно активно мигрируют в промерзших породах. Даже при температурах -- 10-12°С в породах присутствует незамерзающая, так называемая пленочная, вода. Что особенно важно, свойства радиоактивных элементов, составляющих РАО, с точки зрения их возможной миграции в мерзлоте совершенно не изучены. Поэтому предположение о непроницаемости мерзлых пород для радионуклидов лишено всяких оснований.

Во-вторых, если даже окажется, что мерзлота действительно хороший изолятор РАО, то невозможно доказать, что сама мерзлота просуществует достаточно долго: напомним, что нормативы предусматривают захоронение на срок в 10 тысяч лет. Известно, что состояние мерзлоты определяется климатом, причем двумя наиболее важными параметрами -- температурой воздуха и количеством атмосферных осадков. Как вы знаете, температура воздуха повышается в связи с глобальным изменением климата. Наивысший темп потепления приходится как раз на средние и высокие широты северного полушария. Ясно, что такое потепление должно привести к протаиванию льда и сокращению мерзлоты. Как показывают расчеты, активное протаивание может начаться уже через 80-100 лет, и темп протаивания может достичь 50 метров в столетие. Таким образом, мерзлые породы Новой Земли могут полностью исчезнуть за 600-700 лет, а это всего 6-7% от времени, требуемого для изоляции отходов. Без мерзлоты карбонатные породы Новой Земли обладают весьма низкими изолирующими свойствами по отношению к радионуклидам. Никто в мире пока не знает, где и как хранить высокоактивные РАО, хотя работы в ном направлении ведутся. Пока речь идет о перспективных, а отнюдь не промышленных технологиях заключения высоко активных РАО в тугоплавкое стекло или керамические соединения. Однако неясно, как эти материалы поведут себя под воздействием заключенных в них РАО в течение миллионов лет. Столь длительный срок хранения обусловлен огромным периодом полураспада ряда радиоактивных элементов. Ясно, что выход их наружу неизбежен, ибо материал контейнера, в котором они будут заключены столько не "живет".

Все технологии обработки и хранения РАО условны и сомнительны. А, если атомщики будут по своему обыкновению, оспаривать этот факт, то уместно будет спросить их: "Где гарантия, что все существующие хранилища и могильники уже сейчас не являются носителями радиоактивного заражения, так как все наблюдения за ними скрываются от общественности.

Рис. 3. Экологическая ситуация на территории РФ: 1 - подземные ядерные взрывы; 2 - крупные скопления расщепляющихся материалов; 3 - испытания ядерного оружия; 4 - деградация естественных кормовых угодий; 5 - кислые атмосферные осадки; 6 - зоны острых экологических ситуаций; 7 - зоны очень острых экологических ситуаций; 8 - нумерация кризисных регионов.

В нашей стране существуют несколько могильников, хотя об их существовании стараются умолчать. Наиболее крупный расположен в районе Красноярска под Енисеем, где происходит захоронение отходов большинства российских атомных электростанций и ядерные отходы ряда европейских государств. При проведении научно-изыскательских работ по данному хранилищу результаты оказались положительными, но в последнее время наблюдение показывают нарушение экосистемы р. Енисей, что появились рыбы мутанты, изменилась структура воды в определенных районах, хотя данные научных экспертиз тщательно скрываются.

Сегодня на Ленинградской атомной уже и ХОЯТ заполнено под завязку. За 26 лет эксплуатации ядерный "хвост" ЛАЭС составил 30 тысяч сборок. Учитывая, что каждая весит чуть больше сотни килограммов, общая масса высокотоксичных отходов достигает 3 тысяч тонн! И весь этот ядерный "арсенал" находится неподалеку от первого блока ЛАЭС, к тому же на самом берегу Финского залива: 20 тысяч кассет скопилось на Смоленской, примерно столько же на Курской АЭС. Существующие сегодня технологии переработки ОЯТ не выгодны с экономической точки зрения и опасны с экологической. Несмотря на это атомщики настаивают на необходимости строительства объектов по переработке ОЯТ, в том числе и в России. Существует план строительства в Железногорске (Красноярске-26) второго российского завода по регенерации ядерного топлива, так называемого РТ-2 (РТ-1 находится на территории комбината "Маяк" в Челябинской области и перерабатывает ядерное топливо из реакторов типа ВВЭР-400 и атомных подводных лодок). Предполагается, что РТ-2 будет принимать на хранение и переработку ОЯТ в том числе и из-за рубежа, на средства этих же стран планировалось осуществлять и финансирование проекта.

Многие ядерные державы пытаются сплавить низко- и высокоактивные отходы в более бедные страны, которые крайне нуждаются в иностранной валюте. Так, низкоактивные отходы обычно продаются из Европы в Африку. Переброска ядовитых отходов в менее развитые страны тем более безответственна, учитывая то, что в этих странах нет подходящих условий для хранения ОЯТ, не будут соблюдаться необходимые меры по обеспечению безопасности при хранении, не будет качественного контроля за ядерными отходами. Ядерные отходы должны содержаться в местах (странах) их производства в накопителях длительного срока хранения, - считают специалисты, - они должны быть изолированы от окружающей среды и контролироваться высококвалифицированным персоналом.



Читайте также: