Технологии по утилизации отходов. Новые технологии по утилизации

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет» И.В. ШАШКОВ, А.С. КЛИНКОВ, П.С. БЕЛЯЕВ, М.В. СОКОЛОВ ВАЛКОВОЕ ОБОРУДОВАНИЕ И ТЕХНОЛОГИЯ НЕПРЕРЫВНОЙ ПЕРЕРАБОТКИ ОТХОДОВ ПЛЕНОЧНЫХ ТЕРМОПЛАСТОВ Рекомендовано Научно-техническим советом университета в качестве монографии Тамбов Издательство ФГБОУ ВПО «ТГТУ» 2012 1 УДК 621.929.3 ББК Л71 В156 Р еце нз е нт ы: Доктор технических наук, профессор заведующий кафедрой «Природопользование и защита окружающей среды» ФГБОУ ВПО «ТГТУ» Н.С. Попов Кандидат технических наук, старший научный сотрудник главный инженер ОАО «НИИРТМаш» В.В. Бастрыгин В156 Валковое оборудование и технология непрерывной перера- ботки отходов пленочных термопластов: монография / И.В. Шашков, А.С. Клинков, П.С. Беляев, М.В. Соколов. – Тамбов: Изд-во ФГБОУ ВПО «ТГТУ», 2012. – 136 с. – 100 экз. – ISBN 978-5-8265-1091-9. Рассмотрены основные технологические и конструктивные аспекты проектирования валкового оборудования для непрерывной переработки пленочных отходов термопластов. Особое внимание уделено вопросам исследования влияния суммарной величины сдвига на физико- механические показатели получаемого гранулята. Приведена методика инженерного расчета основных параметров непрерывного процесса вальцевания и конструкции валкового оборудования непрерывного действия с заданным качеством получаемого гранулята. Монография полезна для инженерно-технических работников, за- нимающихся проектированием и эксплуатацией валкового оборудова- ния по переработке полимерных материалов, а также аспирантам, магистрантам и студентам старших курсов, специализирующимся в области переработки пластмасс и эластомеров. УДК 621.929.3 ББК Л71 ISBN 978-5-8265-1091-9 © Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет» (ФГБОУ ВПО «ТГТУ»), 2012 2 ВВЕДЕНИЕ В настоящее время проблема переработки отходов полимерных материалов актуальна, в первую очередь, с позиций охраны окружаю- щей среды, но также и с тем, что в условиях дефицита полимерного сырья, пластмассовые отходы становятся мощным сырьевым и энерге- тическим ресурсом. Проблем, связанных с утилизацией полимерных отходов, доста- точно много. Они имеют свою специфику, но их нельзя считать нераз- решимыми. Однако решение невозможно без организации сбора, сор- тировки и первичной обработки амортизованных материалов и изде- лий; без разработки системы цен на вторичное сырье, стимулирующих предприятия к их переработке; без создания эффективных способов переработки вторичного полимерного сырья, а также методов его мо- дификации с целью повышения качества; без создания специального оборудования для его переработки; без разработки номенклатуры из- делий, выпускаемых из вторичного полимерного сырья. Отходы пластических масс делятся на: технологические отходы производства, которые возникают при синтезе и переработке термо- пластов; отходы производственного потребления – накапливаются в результате выхода из строя изделий из полимерных материалов, используемых в различных отраслях народного хозяйства; отходы об- щественного потребления, которые накапливаются у нас дома, на предприятиях общественного питания и т.д., а затем попадают на го- родские свалки; в конечном итоге они переходят в новую категорию отходов – смешанные отходы. 3 Наибольшие трудности связаны с переработкой и использованием смешанных отходов. Основное количество отходов уничтожают захоронением в почву или сжиганием. Однако уничтожение отходов экономически невыгод- но и технически сложно. Кроме того, захоронение, затопление и сжи- гание полимерных отходов ведет к загрязнению окружающей среды, к сокращению земельных угодий (организация свалок) и т.д. Термические методы, применяемые для разложения отходов пла- стмасс, и создание биоразрушающихся полимеров требуют значитель- ных финансовых затрат, сложны технологически. Поэтому наиболее приемлемым с точки зрения охраны окружающей среды и финансовых затрат является переработка отходов полимерных материалов механи- ческим рециклингом. Однако имеющаяся технология переработки отходов полимерных материалов, включающая в себя измельчение, мойку, сушку, перера- ботку в червячно-дисковых экструдерах, требует значительных затрат электроэнергии, трудовых затрат, увеличение производственных пло- щадей, что приводит к увеличению себестоимости продукции. В связи с этим предлагается непрерывная технология переработки отходов пленочных полимерных материалов на вальцах. Применение данной технологии предполагает снижение энергозатрат, трудовых затрат, сокращение производственных площадей, что приведет к уменьшению себестоимости продукции. Также до настоящего времени отсутствует математическая мо- дель процесса переработки полимерного материала в межвалковом зазоре валкового оборудования непрерывного действия и методика инженерного расчета основных технологических параметров непре- рывного процесса вальцевания и конструктивных параметров валко- вых пластикаторов-грануляторов непрерывного действия с учетом за- данного качества получаемого гранулята. Поэтому поставленная в на- стоящей работе задача изучения непрерывного процесса переработки отходов термопластичных пленочных полимерных материалов на вал- ковом оборудовании является весьма актуальной как в научном, так и практическом плане. Настоящая работа посвящена теоретическому и эксперименталь- ному исследованию процесса вторичной переработки отходов пленоч- ных термопластичных полимерных материалов по непрерывной тех- нологии на валковом оборудовании. Цель работы – разработка валкового оборудования и технологии процесса непрерывной переработки отходов пленочных термопластов. 4 В данной работе исследовался непрерывный процесс переработки отходов пленочных термопластов на валковой установке с изменением в широком диапазоне технологических и конструктивных параметров, в соответствии с чем решались следующие задачи: – анализ современного состояния утилизации и вторичной пере- работки отходов полимерных материалов; – рассмотрение существующих технологий переработки отходов пленочных термопластов; – разработка технологического процесса и валкового оборудо- вания для вторичной переработки отходов пленочных термопластич- ных полимерных материалов; – создание экспериментальной валковой установки непрерывно- го действия по изучению процесса переработки отходов пленочных термопластичных полимерных материалов с изменением в широком диапазоне технологических и конструктивных параметров; – исследование влияния технологических параметров процесса вальцевания (частоты вращения валков, величины минимального зазо- ра между валками, величины фрикции, величины «запаса» материала на валках) и конструктивных параметров оборудования (конструкции отборочно-гранулирующего устройства, геометрических размеров фильеры) на свойства (показатель текучести расплава, предел прочно- сти и относительное удлинение при разрыве) и производительность получаемого гранулята с целью выбора параметров управления; – разработка математической модели и программного обеспече- ния для расчета суммарной величины сдвига, характеризующей влия- ние различных технологических и конструктивных параметров про- цесса на физико-механические показатели получаемого гранулята; – разработка методики инженерного расчета основных парамет- ров непрерывного процесса вальцевания и конструкции валковых пла- стикаторов-грануляторов непрерывного действия с учетом заданного качества получаемого гранулята. 5 ОСНОВНЫЕ ОБОЗНАЧЕНИЯ Q – производительность; N – мощность; V – объем; ∆P – перепад давления; n, K и m – реологические константы; ё – вязкость; R – радиус; lв – длина рабочей части валка; Xн, Xк – безразмерные координаты сечений входа и выхода; P – удельная мощность, характеризующая интенсивность механического воздействия на обрабатываемый материал; d – диаметр; f – фрикция; I – показатель текучести расплава; σТ – предел текучести при растяжении; σр – предел прочности при разрыве; ε – относительное удлинение при разрыве; h0 – величина минимального зазора; h02 – половина величины минимального зазора; qN – удельная мощность, затрачиваемая на производство 1 кг продукции; u – частота вращения переднего валка; t – время вальцевания; γ – величина сдвига; zj – элементарный участок Индексы ф – фильера; н – начальное; к – конечное; с – суммарная; х – вдоль оси Х Аббревиатуры ПЭ – полиэтилен; ПВХ – пластифицированный поливинилхлорид; ПП – полипропилен; ПС – полистирол; ПЭТФ – полиэтилентерефталат; ПО – полиолефины; ПА – полиамид; ПЭВП и ПЭНП – полиэтилен вы- сокой и низкой плотности; ЭУ – экспериментальная установка 6 1. СОВРЕМЕННОЕ СОСТОЯНИЕ ПЕРЕРАБОТКИ ОТХОДОВ ПОЛИМЕРНЫХ МАТЕРАЛОВ 1.1. АНАЛИЗ СОСТОЯНИЯ ВТОРИЧНОЙ ПЕРЕРАБОТКИ ПОЛИМЕРНЫХ МАТЕРИАЛОВ В современном мире существует свыше 400 различных видов пласт- массовых отходов. Мировое производство пластмасс возрастает в среднем на 5…6 % ежегодно и к 2013 году, по прогнозам, достигнет 250 млн. т. Их потребление на душу населения в индустриально развитых странах за последние 20 лет, примерно, удвоилось (достигнув 85…90 кг), а к концу десятилетия, как полагают, повысится на 45…50 % . Одним из быстроразвивающихся направлений использования пластмасс является упаковка. Уже с 1975 года полимеры вышли на третье место после стекла, бумаги и картона по применению для упа- ковки . Из всех выпускаемых пластиков 41 % используется в упаковке, из этого количества 47 % расходуется на упаковку пищевых продуктов . Удобство и безопасность, низкая цена и высокая эстетика являются определяющими условиями ускоренного роста использования пластиче- ских масс при изготовлении упаковки. Упаковка из синтетических поли- меров, составляющая 40 % бытового мусора, практически «вечна» – она не подвергается разложению. Поэтому использование пластмассовой упаковки сопряжено с образованием отходов в размере 40…50 кг/год в расчете на одного человека. В России предположительно к 2013 году полимерные отходы со- ставят больше 1 млн. т, а процент их использования до сих пор мал . Учитывая специфические свойства полимерных материалов, они не подвергаются гниению, коррозии; проблема их утилизации носит, прежде всего, экологический характер. Общий объем захоронения твердых бытовых отходов только в Москве составляет около 4 млн. т в год. От общего уровня отходов перерабатывается только 5…7 % от их массы. По данным на 1998 год в усредненном составе твердых бы- товых отходов, поставляемых на захоронение, 8 % составляет пласт- масса, что составляет 320 тыс. т в год . Однако в настоящее время проблема переработки отходов поли- мерных материалов обретает актуальное значение не только с позиций охраны окружающей среды, но и связана с тем, что в условиях дефи- цита полимерного сырья пластмассовые отходы становятся мощным сырьевым и энергетическим ресурсом. Вместе с тем решение вопросов, связанных с охраной окружаю- щей среды, требует значительных капитальных вложений. Стоимость 7 обработки и уничтожения отходов пластмасс, примерно, в 8 раз пре- вышает расходы на обработку большинства промышленных и почти в 3 раза – на уничтожение бытовых отходов. Это связано со специфи- ческими особенностями пластмасс, значительно затрудняющими или делающими непригодными известные методы уничтожения твердых отходов. Использование отходов полимеров позволяет существенно эко- номить первичное сырье (прежде всего нефть) и электроэнергию . Проблем, связанных с утилизацией полимерных отходов, доста- точно много. Они имеют свою специфику, но их нельзя считать нераз- решимыми. Однако решение невозможно без организации сбора, сор- тировки и первичной обработки амортизованных материалов и изде- лий; без разработки системы цен на вторичное сырье, стимулирующих предприятия к их переработке; без создания эффективных способов переработки вторичного полимерного сырья, а также методов его мо- дификации с целью повышения качества; без создания специального оборудования для его переработки; без разработки номенклатуры из- делий, выпускаемых из вторичного полимерного сырья. Отходы пластических масс можно разделить на три группы. 1. Технологические отходы производства, которые возникают при синтезе и переработке термопластов. Они делятся на неустранимые и устранимые технологические отходы. Неустранимые – это кромки, высечки, обрезки, литники, облой, грат и т.д. В отраслях промышлен- ности, занимающихся производством и переработкой пластмасс, таких отходов образуется от 5 до 35 % . Неустранимые отходы, по суще- ству представляющие собой высококачественное сырье, по свойствам не отличаются от исходного первичного полимера. Переработка его в изделия не требует специального оборудования и производится на том же предприятии. Устранимые технологические отходы производства образуются при несоблюдении технологических режимов в процессе синтеза и переработки, т.е. это – технологический брак, который мо- жет быть сведен до минимума или совсем устранен. Технологические отходы производства перерабатываются в различные изделия, исполь- зуются в качестве добавки к исходному сырью и т.д. 2. Отходы производственного потребления накапливаются в ре- зультате выхода из строя изделий из полимерных материалов, исполь- зуемых в различных отраслях народного хозяйства (амортизованные шины, тара и упаковка, детали машин, отходы сельскохозяйственной пленки, мешки из-под удобрений и т.д.). Эти отходы являются наибо- лее однородными, малозагрязненными и поэтому представляют наи- больший интерес с точки зрения их повторной переработки. 3. Отходы общественного потребления, которые накапливаются у нас дома, на предприятиях общественного питания и т.д., а затем 8 попадают на городские свалки; в конечном итоге они переходят в но- вую категорию отходов – смешанные отходы. Наибольшие трудности связаны с переработкой и использованием смешанных отходов. Причиной этого является несовместимость термопластов, входящих в состав бытового мусора, что требует их постадийного выделения. Кроме того, сбор изношенных изделий из полимеров у населения – чрезвычайно сложное мероприятие с органи- зационной точки зрения и пока еще у нас в стране не налажен. Основное количество отходов уничтожают захоронением в почву или сжиганием. Однако уничтожение отходов экономически невыгод- но и технически сложно. Кроме того, захоронение, затопление и сжигание полимерных отходов ведет к загрязнению окружающей среды, к сокращению земельных угодий (организация свалок) и т.д. Однако и захоронение, и сжигание продолжают оставаться до- вольно широко распространенными способами уничтожения отходов пластмасс. Чаще всего тепло, выделяющееся при сжигании, использу- ют для получения пара и электроэнергии. Но калорийность сжигаемо- го сырья невелика, поэтому установки для сжигания, как правило, яв- ляются экономически малоэффективными. Кроме того, при сжигании происходит образование сажи от неполного сгорания полимерных продуктов, выделение токсичных газов и, следовательно, повторное загрязнение воздушного и водного бассейнов, быстрый износ печей за счет сильной коррозии . В начале 70-х годов прошлого века интенсивно начали развивать- ся работы по созданию био-, фото- и водоразрушаемых полимеров. Получение разлагаемых полимеров вызвало настоящую сенсацию, и этот способ уничтожения вышедших из строя пластмассовых изделий рассматривался как идеальный. Однако последующие работы в этом направлении показали, что трудно сочетать в изделиях высокие физи- ко-механические характеристики, красивый внешний вид, способность к быстрому разрушению и низкую стоимость. Создание фото- и биоразрушаемых пластмасс основано на введе- нии в цепь полимера фото- и биоактивирующих добавок, которые должны содержать функциональные группы, способные разлагаться под действием ультрафиолетовых лучей или анаэробных бактерий. Трудность в том, что добавки вводят в полимер на стадии синтеза или переработки, а разрушение его должно протекать после использо- вания, но не во время переработки. Поэтому проблема заключается в создании активаторов разрушения, обеспечивающих определенный срок службы пластмассовых изделий без ухудшения их качества. Активаторы должны быть также нетоксичными и не повышать стои- мость материала. Оценка сложившейся ситуации по разработке и освоению биоде- градируемых пластмасс показана в работах . 9 В последние годы исследования в области саморазрушающихся полимеров значительно сократились в основном потому, что издержки производства при получении таких полимеров, как правило, значи- тельно выше, чем при получении обычных пластических масс, и этот способ уничтожения является экономически невыгодным. Основной путь использования отходов пластмасс – это их утили- зация, т.е. повторное использование. Показано, что капитальные и экс- плуатационные затраты по основным способам утилизации отходов не превышают, а в ряде случаев даже ниже затрат на их уничтожение. Положительной стороной утилизации является также и то, что получа- ется дополнительное количество полезных продуктов для различных отраслей народного хозяйства и не происходит повторного загрязне- ния окружающей среды. По этим причинам утилизация является не только экономически целесообразным, но и экологически предпочти- тельным решением проблемы использования пластмассовых отходов. Подсчитано, что из ежегодно образующихся полимерных отходов в виде амортизованных изделий утилизации подвергается только незна- чительная часть (всего несколько процентов). Причиной этого являют- ся трудности, связанные с предварительной подготовкой (сбор, сорти- ровка, разделение, очистка и т.д.) отходов, отсутствием специального оборудования для переработки и т.д. К основным способам утилизации отходов пластических масс от- носятся: − термическое разложение путем пиролиза; − разложение с получением исходных низкомолекулярных про- дуктов (мономеров, олигомеров); − вторичная переработка. Пиролиз – это термическое разложение органических продуктов в присутствии кислорода или без него. Пиролиз полимерных отходов позволяет получить высококалорийное топливо, сырье и полуфабрика- ты, используемые в различных технологических процессах, а также мономеры, применяемые для синтеза полимеров. В процессе пиролиза могут образовываться газообразные (пиролиз- ный газ), жидкие (пиролизное масло) или твердые (кокс) продукты . Газообразные продукты термического разложения пластмасс могут использоваться в качестве топлива для получения рабочего водяного пара. Жидкие продукты используются для получения теплоносителей. Спектр применения твердых (воскообразных) продуктов пиролиза отхо- дов пластмасс достаточно широк (компоненты различного рода защит- ных составов, смазок, эмульсий, пропиточных материалов и др.) . Совершенствование установок для сжигания бытового мусора привело к возникновению таких методов пиролиза, которые позволяют получать горючие, безвредные для окружающей среды газы; значи- тельное уменьшение объема выбросов. Однако получаемые при этом 10

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Чем опасно пренебрежительное отношение к таре и насколько важна для экологии переработка полиэтилена? В нашей жизни полиэтилен присутствует в качестве упаковочной тары, но распространен он, несмотря на узкую специализацию, повсеместно. Почти в каждом доме есть пакет с пакетами, который мы собираем из принципов экономии. Но вот беда, оказывается, что чем лучше сырье, тем труднее его утилизировать и тем дольше сам срок его разложения.

Актуальность переработки

Переработка сырья полиэтилена – это немаловажная статья расходов для города, так как материал характеризуется невероятной устойчивостью. Ему не страшна вода, щелочь, растворы солей. Полиэтилен не боится даже органических и неорганических кислот. Можно отметить, что это неплохие качества, но ведь они могут обернуться рядом проблем.

В первую очередь вызывает опасения экологическая ситуация — по приблизительным подсчетам на разложение полиэтилена уходит до 300 лет. Если простой полиэтиленовый пакет попадает на свалку в общей массе бытовых отходов, то он сильно затрудняет процесс переработки. Со временем этот пакет подвергается термостарению, постепенно разлагаясь под воздействием солнечных лучей, тепла и кислорода. В ходе разрушений безобидный пакет выделяет вредные химические вещества в почву и воду.

Увы, ограничить производство пластмасс и полиэтилена не представляется возможным, но можно рационально организовать весь рабочий процесс. Отходы полиэтилена, по сути, представляют собой универсальный материал. Вторичную переработку полиэтилена без преувеличения можно назвать новой жизнью сырья. От человека требуется создать и усовершенствовать способы сбора и переработки сырья, чтобы сделать процесс цикличным. Полиэтиленовые отходы вполне могут стать предметами повседневного обихода.

Предприятия по переработке

В последние годы планомерно растет количество организаций, перерабатывающих данное сырье. Причем дело не только в экологических проблемах, но и в перспективности развития такого бизнеса. Полиэтилен может стать отличной базой для создания пластиковых панелей, мусорных контейнеров, всевозможных бытовых емкостей. Открывается определенный простор для фантазии предпринимателей, хотя, естественно, вторичная полиэтиленовая продукция предполагает некоторые ограничения.

Трудностей вторичная переработка пленки и пакетов не вызывает, так как структура используемых материалов по большей мере не меняется, но вот качество переработанного сырья снижается, а соответственно сужается сфера дальнейшего применения.

Особенности рабочего процесса

Существует несколько циклов переработки полиэтиленовых пакетов, пленки. Первый цикл почти не влияет на снижение потребительских характеристик новых изделий. Но вот каждый последующий цикл вносит свою «негативную лепту», делая сырье пригодным лишь для производства особенных материалов.

По существующим технологиям можно выделить шесть этапов переработки отходов полиэтилена:

  1. Сначала идет сбор сырья: пленки, бутылок, прочего бытового мусора. Сортировка мусора может производиться посредством ручного или механического труда. Если бытовые отходы во время сбора разделять на макулатуру, стекло, бумагу, ПЭТ, то можно на треть сократить количество мусора, которому требуется утилизация.
  2. Собранное сырье направляется в промывочные машины. Этот этап необходим для того, чтобы избавиться от грязи, посторонних предметов и бумаги. Если сырье напрямую сдают в пункты приема, то приемщик может проверять состояние пленки, бутылок, макулатуры, чтобы повысить или понизить цену, предлагаемую за них.
  3. Далее происходит измельчение собранного сырья, для чего используются дробильные установки.
  4. На случай, если в сырье осталась влага или случайные твердые примеси, осуществляется процесс обработки в центрифуге.
  5. Теперь материал отправляется в сушильную камеру, где также идет термическая обработка.
  6. Работа завершена и материал готов к вторичному использованию. Из него можно сделать универсальные продукты: полиэтиленовая пленка, пакеты, упаковочная тара, трубы.

Работа в деталях

А теперь попробуем более пристально приглядеться к процессу переработки полиэтилена в гранулы, ведь до этого процесс был рассмотрен лишь схематично. Разумеется, для работы требуется соответствующее оборудование.

Налаженная работа возможна при наличии:

  • промывочной машины
  • дробильной установки
  • центрифуги
  • сушильной установки
  • агломератора
  • гранулятора
  • экструдера

На производстве актуальным будет наличие конвейера или пневмотранспортера, что позволит полностью автоматизировать процесс.

В домашних условиях почти невозможно наладить бесперебойный процесс получения вторичного полиэтилена, но можно заложить основу для перспективного бизнеса. В первую очередь можно объявить процесс сбора сырья, так как без него такая работа в принципе невыполнима. Ручная сортировка бытовых отходов обойдется дешевле по сравнению с механическим способом, но придется начинать с малого объема используемого сырья.

Самостоятельная переработка плёнки позволяет получить плотную водонепроницаемую ткань с функцией гидроизоляции. Сам процесс работы прост – кусок пленки нужно уложить между двумя частями ткани и прогладить все электрическим утюгом. На выходе получается трёхслойный композиционный материал, так как пленка плавится и проникает в слои ткани. Собственноручно можно получить композиционный материал на основе пленки, ткани и алюминиевой фольги. Алгоритм работы тот же за исключением того факта, что один слой ткани заменяется фольгой. Материал из пленки, ткани и фольги – отличный теплоизолятор. При помощи сшитого полиэтилена многие люди обустраивают теплый пол в доме.

Для большей выгоды

Агломератор – устройство, способное перерабатывать пленку и бутылки. За счет температурного воздействия получается агломерат – запеченные комочки из бывших бутылок и пленки. Агломерат можно реализовать уже на этом этапе или пойти дальше и переработать его в гранулы.

Гранулятор полиэтилена позволяет увеличить доходы предприятия от сбора и сбыта вторичного сырья. В результате получается продукт, технически выигрывающий у своих «порошкообразных или чешуйчатых собратьев по цеху» за счет малого объема (а соответственно меньших затрат на тару и транспортировку), высокой сыпучести, минимизации потерь и пылеобразования, меньшего риска деструкции и фотостарения.

А зачем же на предприятии нужен экструдер? Как раз с его помощью можно получить уникальный материал – полиэтилен низкого давления. Экструдер вступает в работу после того, как свое слово скажет агломератор и превратит результат сбора и переработки в кашицу. Теперь расплавленная масса пластика идёт через формировочное отверстие, где плавится и создаёт нити, которые охлаждаются под водой и режутся на мелкие кусочки. На выходе готова гранула ПНД.

При низком давлении

Полиэтилен низкого давления широко используется во всём мире. Это органическое соединение, напоминающее белый воск. Вторичный полиэтилен низкого давления получают посредством сбора и переработки бутылок и труб.

Данный материал не боится ни морозов, ни химикатов. Он не чувствует ударов и не является проводником тока. Надо добавить, что этот материал водоустойчив и не вступает в реакцию с щелочами, кислотами и растворами солей. Разлагается ПНД под действием азотной кислоты (50%), хлора и фтора.

Как может пригодиться данный продукт

  1. На основе ПНД делают аксессуары для плавательных бассейнов.
  2. Он используется в процессе работы 3Д-принтеров.
  3. Такой материал актуален для работы в условиях химического и электрического воздействия.
  4. ПНД хорош для создания антикоррозийного покрытия, продуктовых контейнеров, бутылок и сбора водопроводных соединений.
  5. В спортивных учреждениях ПНД применяют для производства гимнастических обручей.
  6. В ресторанах ПНД – это будущий полиэтиленовый пакет, пластиковый гарнитур или тара. Пакет из ПНД шуршит и мнется, так что его используют для так называемых «маек».
  7. Изготовители пиротехники используют ПНД для большей зрелищности своей работы.

Итог

Переработка сырья полиэтилена в гранулы дает возможность существенно снизить количество мусора на городских свалках. Помните, что полиэтилен и пластик почти не разлагаются. А меж тем на основе ПЭТ можно делать успешный бизнес. Не выбрасывайте то, что может пригодиться в дальнейшем. Даже простой пакет, бутылка, пленка – могут пригодиться для дела.

Обращение с отходами – деятельность, в процессе которой образуются

отходы, а также деятельность по сбору, использованию, обезвреживанию, транспортированию, размещению отходов. Процессы обращения с отходами (жизненный цикл отходов) включают в себя следующие этапы: образование, накопление и временное хранение, первичная обработка (сортировка, дегидрация, нейтрализация, прессование, тарирование и др.), транспортировка, вторичная переработка (обезвреживание, модификация, утилизация, использование в качестве вторичного сырья), складирование, захоронение и др.

Разнообразие непищевых отходов предприятий пищевой индустрии и многопрофильность их применения подразумевают использование разных технологий утилизации. И чем совершеннее эти технологии, тем выше рентабельность переработки и качество получаемой продукции.

Система сбора и переработки отходов должна опираться на принцип максимального ограничения влияния отходов на окружающую среду. Для достижения этого важны следующие приоритеты:

Минимизация загрязнения окружающей среды от несанкционированных свалок;

Максимальная утилизация всех ценных составляющих пищевых отходов;

Постепенная подготовка населения к раздельному сбору отходов;

Максимальное использование ценных вторичных ресурсов; -ресурсосбережение при обращении с пищевыми отходами;

– прозрачный учет данных как основа для принятия решений по тарифам, а также иных управленческих решений;

Улучшение качества жизни населения.

В качестве основных технических элементов системы обращения с пищевыми отходами можно рассмотреть следующие подсистемы:

1) сбор и промежуточное складирование пищевых отходов;

2) вывоз пищевых отходов;

3) переработка пищевых отходов;

4) захоронение неутилизируемых фракций.

5) переработка пищевых отходов в биогаз;

6).использование новейших технологий утилизации пищевых отходов.

Технологии обращения с пищевыми отходами разделяются, как правило, на несколько следующих этапов.

Организация системы сбора пищевых отходов

Принимаемая система сбора отходов зависит от расстояния населенного пункта до объекта переработки, вида жилого фонда (высотная или малоэтажная застройка), планировки (ширина проездов, наличие площадей для разворота техники и т.п.), принятой стратегии обращения с отходами (основной технологией служит захоронение, отбор вторичного сырья или сжигание), климатических условий, принятой технологии сбора (в одно ведро, селективный), применяемой техники для вывоза отходов, наличия ограничений по габаритам и весу транспорта для вывоза отходов.

Основными вариантами реализации сбора отходов являются:

Сбор в контейнеры малой емкости (до 3 куб. м);

Сбор отходов с использованием мусоропроводов;

Сбор с использованием сменяемых контейнеров с подпрессовкой/без подпрессовки в заглубленном или наземном исполнении;

Индивидуальная система сбора с использованием мешков.

Современный и надежный контейнерный парк, позволяющий собирать пищевые отходы, является наряду с мусороуборочной техникой основой для эффективного сбора и транспортировки пищевых отходов к местам их дальнейшей обработки (перегрузки, сортировки, утилизации).

Число контейнеров должно определяться исходя из сложившейся ситуации и экономической целесообразности.

Основные требования к контейнерам:

Наличие крышек для предотвращения распространения дурных запахов, растаскивания отходов животными, распространения инфекций, сохранения ресурсного потенциала отходов, предотвращения обводнения отходов;

Оснащение колесами, что позволяет выкатывать контейнер для опорожнения при вывозе мусороуборочной техникой с задней загрузкой;

Прочность, огнеупорность, сохранение прочностных свойств в холодный период времени;

Низкие адгезионные свойства (с целью предотвращения примерзания и прилипания отходов).

Достоинства данной схемы:

Возможность использования при внедрении раздельного сбора;

Удобство использования для отходообразователей (есть возможность разместить отходы на площадке в любое время);

Достаточно низкие удельные затраты на транспортировку (маршрут может быть легко оптимизирован).

Схема с использованием контейнерных площадок, рассчитанных на сбор отходов от большого числа поставщиков, подходит для сбора отходов от объектов инфраструктуры и благоустроенного жилого фонда. Использование данной схемы в сельской местности нецелесообразно, так как проблематично организовать регулярный вывоз отходов.

Сбор пищевых отходов с использованием мусоропроводов реализуется в домах с количеством этажей более девяти. При этом отходы накапливаются в специально отведенном помещении внутри дома в течение суток и более, что приводит к распространению запахов, размножению насекомых и грызунов, являющихся переносчиками различных заболеваний.

Основное и единственное достоинство системы сбора отходов с использованием мусоропроводов – удобство выноса мусора для населения.

К недостаткам такой системы можно отнести:

Невозможность организации селективного сбора;

Распространение насекомых, грызунов, являющихся переносчиками инфекций;

Неудобство обслуживания.

Организация системы вывоза пищевых отходов.

Варианты системы вывоза пищевых отходов: прямой вывоз собирающими мусоровозами и двухэтапный вывоз с промежуточной перегрузкой на станции.

Прямой вывоз отходов собирающими мусоровозами (с объемом кузова 12 – 18 куб. м) применим только в том случае, если расстояние до объекта захоронения не более 15 – 17 км, в противном случае их использование становится экономически нецелесообразным.

Мусоровозы с задней загрузкой позволяют:

Обслуживать контейнеры различной конфигурации (от 0,1 до 2 куб. м);

Минимизировать затраты на загрузку отходов (меньшая высота подъема контейнера);

Обеспечить более комфортные условия труда для работников, обслуживающих спецтехнику;

Уменьшить количество просыпающихся отходов.

Подбор транспорта для вывоза пищевых отходов во многом определяется принятой системой сбора. Кроме того, при подборе оборудования следует учитывать:

Максимально разрешенные нагрузки на дорожное полотно;

Возможность подъезда и разворота техники (ширина улиц, наличие разворотных площадок, мостов, тоннелей, арок и т.п.);

Количество и качество образующихся отходов.

Вывоз отходов с контейнерных площадок осуществляется собирающими мусоровозами. По способу погрузки пищевых отходов из контейнера собирающие мусоровозы делятся на две группы: (1) мусоровозы задней загрузки; (2) мусоровозы боковой загрузки. Для обслуживания описанного выше контейнерного парка для сбора пищевых с помощью "евроконтейнеров" или контейнеров типа ГМТ (60 – 240 л) оптимальным является использование мусоровозов с задней загрузкой, например, типа "ротопресс" или "вариопресс".

Основные преимущества технологии задней загрузки:

Коэффициент уплотнения мусора в мусоровозах с задней загрузкой достигает 5, в то время как в мусоровозах с боковой загрузкой этот коэффициент не превышает 1,5 – 2, поэтому при одном и том же объеме мусоросборника при применении соответствующего шасси грузоподъемность мусоровоза увеличивается в 2,5 – 3 раза, что позволяет пропорционально сократить требуемый парк спецтехники;

Технология задней загрузки позволяет решать экологические проблемы за счет исключения просыпания мусора при загрузке контейнера, так как загрузка осуществляется в габаритах мусороприемника, а не через небольшую воронку на крыше мусоросборника, как при боковой загрузке;

Работа с механизмом опрокидывания на мусоровозах с задней загрузкой значительно безопасней для оператора машины, так как подъем контейнера осуществляется на высоту 1,5 – 1,8 м от земли, а не на 2,5 – 4 м, как при боковой загрузке;

При задней загрузке твердыми бытовыми отходами мусоровоз может загружаться и вручную, и фронтальным погрузчиком, что исключено при боковой погрузке.

Двухэтапный вывоз с промежуточной перегрузкой на станции применяется при дальности вывоза более 17 – 25 км.

Доставка пищевых отходов на мусороперегрузочные станции осуществляется малыми собирающими мусоровозами. Вывоз отходов с мусороперегрузочной станции осуществляется мусоровозами со съемными контейнерами 20 – 30 куб. м в уплотненном состоянии.

При выборе большегрузных мусоровозов следует учитывать:

Снаряженную массу транспортного средства (не превышает ли она допустимую нагрузку на дороги);

Длину транспортного средства, радиус разворота, высоту, ширину;

Уровень шумности;

Уровень загрязнения окружающей среды (при наличии особых требований);

Возможность работы в зимний период.

Устройство мусороперегрузочных станций позволяет:

Снизить временные затраты на сбор и вывоз отходов;

Снизить эксплуатационные затраты на ГСМ и ремонт парка мусоровозов;

Укрупнить объекты переработки;

Накапливать транспортные партии вторичного сырья и компостных фракций на мусороперегрузочной станции;

Производить первичную обработку отходов (прессование, тюкование).

Все указанные преимущества в конечном итоге приводят к снижению затрат на сбор и вывоз отходов.

Общей частью различных вариантов схем одноуровневых МПС является следующий технологический процесс:

а) собирающий мусоровоз выгружает отходы на бетонированную площадку приемного отделения МПС;

б) на площадке приемного отделения производится ручной отбор крупногабаритных отходов и металлолома;

в) автопогрузчиком ТБО сгружаются на заглубленную часть наклонного приемного пластинчатого конвейера;

г) с наклонного приемного конвейера ТБО сбрасываются либо:

В транспортный большегрузный (до 25 т) мусоровоз через накопительную воронку путем дозированной подачи ТБО приемным конвейером (вариант 1);

В пресс-контейнер, а также в буферный накопительный бункер объемом до 30 куб. м каждый со стационарным компактором и последующей погрузкой пресс-контейнера на большегрузное транспортное средство, оборудованное механизмом "мультилифт", тросовым или цепным устройством (вариант 2). Наполнение пресс-контейнера или буферного накопительного бункера регулируется реверсивным конвейером на торце приемного конвейера. Реализация схемы МПС по варианту 2 рекомендуется при невысокой производительности станции и небольшом (порядка 5 – 10 км) расстоянии до полигона;

В стационарный пакетирующий пресс для пищевых отходов с автоматической обвязкой 4 – 5 рядами проволоки и последующей погрузкой сформированных тюков плотностью до 1 т/куб. м с помощью погрузчика с боковым захватом на большегрузное транспортное средство (вариант 3).

Станции большой мощности отличаются наличием зоны для временного накопления отходов (для аккумуляции отходов в часы пик, в случае поломки и при плановом ремонте оборудования). Техника, направляемая на станцию, проходит участок контроля, где машина взвешивается, подвергается радиационному и визуальному контролю. Далее отходы направляются на площадку разгрузки.

Организация сортировки отходов.

Представим конвейерную схему сортировки отходов на рис 1.

Рисунок 1 Конвейерная схема сортировки отходов

Отсортированное вторсырье сбрасывается в шахты, после чего оно попадает в бункер, находящийся под контрольной площадкой. Когда бункер заполнен, вторсырье конвейером направляется в центральный пакетирующий пресс.

Здесь ценные вещества прессуются в пакеты и направляются в склад пакетов, где они будут находиться до следующего этапа их обработки.

Фракции, оставшиеся на контрольной площадке, очищаются от металлов надленточным магнитным сепаратором. Остатки вывозятся на полигон и уплотняются.

Транспортировка подлежащего переработке материала или продукции осуществляется при обеспечении непрерывного потока материала. При механической подготовке смешанных отходов происходит выход пыльного отработанного воздуха. Он вытягивается у источника и выводится на промышленный фильтр, встроенный на этой линии. Пыль добавляется к остаткам, направляемым на полигон.

Переработка пищевых отходов

В качестве основных вариантов промышленной переработки пищевых отходов могут быть рассмотрены:

Технология механобиологической переработки;

Технология энергетической утилизации;

Технология компостирования.

Способы механобиологической переработки отходов

1. Процесс предназначен для стабилизации отходов перед дальнейшим захоронением на полигонах. Технология разработана таким образом, чтобы обеспечить максимально полное разложение органических веществ и отделение горючих компонентов. Дополненная процессом перколяции, данная технология позволяет на ограниченном пространстве с низкими эмиссиями сократить время стабилизации отходов на полигоне захоронения. Кроме того, технология позволяет получать компост. Преимущества технологии: увеличение срока эксплуатации полигона захоронения, сокращение массы захораниваемых отходов, снижение затрат на захоронение, стабилизация отходов, производство компоста.

2. Процесс нацелен на оптимальное использование энергетического потенциала отходов. Технология разработана таким образом, чтобы снизить объемы захораниваемых отходов и максимально их гомогенизировать. Преимущества: сокращение объемов отходов, направляемых на захоронение, снижение затрат на захоронение, увеличение производительности.

3. Процесс ориентирован на максимальное сокращение объемов захораниваемых отходов. Оба основных выходящих потока (высокоэнергетическая и аэробно-стабилизированная фракции) после дополнительной подготовки (сушки, измельчения и т.п.) могут быть переработаны путем пиролиза, газификации, сжигания в цементных печах и т.п.

После удаления негабаритных компонентов отходы измельчаются и перемешиваются при помощи специального оборудования.

Далее отходы при помощи барабанного грохота делятся на два потока, при этом размер отверстий сита подбирается в зависимости от состава отходов. Отсев представляет собой богатую органическими компонентами мелкую фракцию. Крупная фракция – сухие компоненты, обладающие высоким энергетическим потенциалом. Обе фракции проходят магнитный сепаратор для отделения черных металлов. Далее мелкая фракция поступает на биологическую переработку (перколяцию), а крупная в зависимости от принятой модели направляется на захоронение или энергетическую утилизацию как вторичное сырье напрямую или после дополнительной обработки. Если отсев представляет собой слаборазлагаемую или сухую органическую фракцию, для которой перколяция неэффективна, он может измельчаться или напрямую подаваться на дальнейшую переработку. Это позволяет отправить промышленные и некоторые другие отходы сразу на прессование. Механическая обработка применяется для смеси отходов.

Перколяция (аэробный гидролиз) является центральным процессом механобиологической переработки отходов и лимитирует общую производительность технологии. Перколятор – горизонтальный цилиндрический реактор непрерывного действия с гидравлически вращающимся центральным стержнем со скребками, расположенными над решеткой. Материал находится в перколяторе около двух дней при температуре 40 – 45 градусов. В реактор подается воздух и подогретая вода, все механически перемешивается, действие воды и микроорганизмов способствует переходу органических веществ в жидкую фазу.

Обогащенная органическими веществами жидкая фаза выходит из перколятора через отверстия в сите. Отмытая твердая фракция через шнековый питатель подается на шнековый пресс для обезвоживания.

Водооборот. Обезвоживание твердой фракции. Твердая фракция выходит из перколятора насыщенной влагой и обезвоживается в шнековом прессе до содержания твердого вещества 55 – 60%. Отжатая вода возвращается в цикл, твердая фракция поступает на дальнейшую переработку.

Удаление минералов и волокон. Технологическая вода из перколятора и шнекового пресса очень насыщена органическими и взвешенными веществами, а также волокнами. Тяжелые инертные материалы (песок, стекло, камни и т.п.) удаляются из технологической воды путем седиметации (осаждения).

Волокнистые частицы всплывают и могут быть отделены, однако в них могут содержаться органические растворимые вещества, поэтому они возвращаются на перколяцию. Для отделения и возврата тонких волокнистых частиц используется сито. После отделения волокон и взвешенных частиц технологическая вода через питатель поступает на анаэробное сбраживание.

Анаэробное сбраживание. Технологическая вода перекачивается в сбраживатель, в котором под воздействием анаэробных метаногенных микроорганизмов органические вещества разлагаются до биогаза. Образующийся биогаз состоит в основном из метана, углекислого газа и незначительного количества сероводорода.

Сбраживатель представляет собой автономный горизонтальный цилиндрический резервуар. Время пребывания технологической воды в реакторе достаточно для разложения органических веществ благодаря быстрому протеканию процесса. Технологическая вода поступает в реактор через впускные отверстия таким образом, что образуется взвешенный слой. Микроорганизмы удерживаются в верхней части реактора при помощи специального слоя. Поступление хлорида железа с отходами вызывает образование серы в осадке, который выводится из цикла.

Переработка твердой фракции. Твердая фракция, выходящая из перколятора, измельчается до размеров 30 – 50 мм и поступает на компостирование.

Твердая фракция, полученная при грохочении отходов, обладает высоким энергетическим потенциалом и может быть использована для получения вторсырья или отправлена на захоронение.

Очистка газов. Сложная система очистки отходящих газов и герметичность оборудования способствуют минимизации выбросов. Так, предварительная сортировка отходов, биологическая переработка и другие процессы, связанные с выделением дурнопахнущих газов, проводятся при отрицательном давлении. Перколяция и очистка технологической воды проводится в герметичном оборудовании. Выделение газов от обработанных отходов минимально благодаря биологическому разложению. Технологические газы от механической обработки подаются для аэрации компостируемых отходов. Для очистки газов, выбрасываемых в атмосферу, используются биофильтры или регенерируемые устройства термического окисления.

Основные характеристики завода механобиологической переработки. Производительность большинства заводов по механобиологической переработке твердых бытовых отходов находится в пределах между 20000 и 100000 т/год, некоторые заводы имеют производительность даже более 200000 т/год.

Время биологической переработки отходов варьирует от 7 дней до 15 недель.

Механическая сортировка пищевых отходов и их дробление позволяют:

Отобрать ценное сырье для его вторичной переработки;

Отобрать органическую фракцию пищевых отходов для ее последующего компостирования;

Повысить теплотехнические и экологические показатели сырья, предназначенного для сжигания.

Состав технологического оборудования и систем:

– сжигательные устройства, каждое из которых состоит из котла-утилизатора и топки, оснащенной загрузочным устройством, механической колосниковой решеткой, газогорелочными устройствами, системой удаления провала, летучей золы и системой выгрузки шлака;

Стационарные трубопроводы;

Система подачи и подогрева воздуха (дутьевые вентиляторы, паровые и газовые подогреватели);

Система газоочистного оборудования, расположенная за котлом;

Система шлако- и золоудаления;

Бункеры сбора твердых остатков и хранения реагентов для газоочистки и водоподготовки;

Оборудование энергетического комплекса, включая две паровые турбины с турбогенераторами;

Система химической водоподготовки, коррекционной обработки воды и химического контроля;

Автоматизированная система управления технологическим процессом (АСУТП);

Система мониторинга выбросов вредных веществ из дымовой трубы.

Необходимо отметить, что выбросы диоксинов и фуранов ниже европейских нормативов (0,1 нг/куб. нм) за счет:

Оптимизации горения пищевых отходов на колосниковой решетке;

Увеличения высоты топки котла, что обеспечивает необходимое двухсекундное пребывание дымовых газов при температуре выше 850 °C;

Ввода в дымовые газы активированного угля, абсорбирующего вторично образованные диоксины.

Для обезвреживания и утилизации золошлаковых отходов возможно применение технологии, которая позволяет получать строительные материалы в виде гранулята и бетонных плит.

Все оборудование завода, технологические процессы сжигания и вспомогательные системы эксплуатируются и управляются при минимальном участии человека и его контактов с отходами с помощью АСУТП.

Технология компостирования

Используется для утилизации биологической фракции отходов с получением применяемого в сельском хозяйстве компоста.

Размеры планируемого сооружения для компостирования определяются ожидаемыми объемами отходов, здесь также следует учесть и сезонные колебания массы отходов в течение года (в период с мая по октябрь обычно поступает в 1,7 раз больше отходов).

Общая технологическая схема компостерного комплекса приведена на рис. 2.

Рисунок 2 Общая технологическая схема компостерного комплекса

Компостирование начинается с приема, оценки и взвешивания доставленного материала. Если отходы не подлежат компостированию, они не принимаются и отсылаются на свалку либо для дальнейшей обработки.

Следующий этап – измельчение с использованием установки барабанного типа. После измельчения поступившие биоотходы проходят трехнедельное интенсивное упревание в туннеле. Для транспортировки материала в туннельное хранилище применяется логистический туннель. Альтернативной системой доставки является использование колесного погрузчика.

После заполнения туннеля упревания материалом ворота закрываются и включается вентиляция. Для компостирования в вентиляционный канал туннеля подводится свежий воздух из цехов через систему труб и туннельный вентилятор. Отработанный воздух поступает в вытяжную трубу и очищается в очистном устройстве со встроенным биофильтром. Все параметры процесса регистрируются и анализируются в системе управления комплексом.

По истечении первой недели интенсивного упревания в туннеле осуществляется переворачивание материала колесным погрузчиком.

Время нахождения в туннеле интенсивного упревания составляет 3 недели. По истечении этого срока материал переносится в открытое место. Перемещение материала служит его разрыхлению и выравниванию. Кроме того, при перемещении можно добавить влаги, в результате чего ее содержание будет находиться под контролем. Это благоприятствует процессу вызревания и позволяет оптимизированно руководить процессом распада биогенных компонентов.

По завершении вышеизложенных процессов материал размалывается и просеивается через сито. Крупные фракции отделяются и направляются в качестве структурного материала на повторное компостирование, а мелкие частицы являются конечным продуктом компостирования.

Технология переработки пищевых отходов в биогаз

В Западной Европе в последнее время в биогаз перерабатываются разные органические отходы: навоз и птичий помет, ил сточных вод, отходы скотобойного производства, предприятий по производству напитков и продовольствия. Биогазовые установки строятся на хозяйственных участках, водоочистительных и пищевых предприятиях. Переработанные в современных биогазовых установках сельскохозяйственные, промышленные и органические сточные отходы меньше засоряют почву, воду и воздух. В них уничтожаются опасные бактерии и вирусы, уменьшается запах, используются местные энергетические источники. С ужесточением требований к охране окружающей среды сельскохозяйственные и промышленные предприятия обязаны применять анаэробные технологии утилизации отходов. Закон об обращении с отходами устанавливает общие требования по превенции, учету, сбору, хранению, транспортировке, использованию, утилизации отходов, чтобы избежать отрицательного воздействия отходов на здоровье людей и окружающую среду, устанавливает основные принципы систем организации и планирования обращения с отходами. Правила и советы по передовому хозяйствованию регламентируют порядок и нормы удобрения полей отходами сельскохозяйственной и пищевой промышленности.

Технология экструзионной обработки

К новейшим приёмам переработки биологических отходов, соответствующим этим требованиям, относятся экструзионные технологии.

Экструзия (от латинского extrudo – выдавливание) – это процесс, совмещающий термо-, гидро- и механохимическую обработку сырья для получения продуктов с новой структурой и свойствами. Экструзионные технологии позволяют проводить быстро и непрерывно в одной машине (экструдере) ряд операций практически одновременно: перемешивать, сжимать, нагревать, стерилизовать, варить и формовать продукт. За короткое время в сырье происходят процессы, соответствующие длительной термообработке.

В наиболее экономически развитых государствах (США, Япония, страны Западной Европы) экструзионные технологии стали приоритетным направлением развития пищевой и кормовой промышленности. В настоящее время различными экструзионными методами производят кондитерские изделия (шоколад, конфеты, печенье, жевательную резинку), продукты детского и диетического питания, макаронные изделия, компоненты овощных консервов и пищевых концентратов, воздушные крупяные палочки (кукурузные, рисовые, пищевые отруби и пр.), а также корма для домашней птицы, животных, рыб.

В кормовой промышленности экструдирование используется для переработки зернопродуктов злаковых и бобовых культур. Из-за большого содержания крахмала усвояемость зерна и продуктов его переработки животными и птицей не превышает 60%. Особенно плохо крахмал усваивается молодняком. Экструзион-ная переработка существенно модифицирует зерно. Основные и наиболее важные изменения происходят при "взрыве" – резком падении давления и температуры при выходе продукта из экструдера: рвутся клеточные стенки, химические связи, меняется структура. Высокомолекулярный полисахарид крахмал, основная составляющая зернового сырья, гидролизуется и превращается в простые моносахариды и декстрины. Содержание растворимых веществ повышается в 5-8 раз. Вместе с тем сохраняется питательная ценность протеина и полностью или значительно разрушаются антипитательные соединения, такие, как уреаза, ингибиторы протеаз, трипсина. В результате быстрого вскипания при выходе из экструдера воды, присутствующей в обрабатываемой массе, продукт становится пористым, увеличиваясь в объёме. Таким образом, он становится более доступным действию пищеварительных соков и ферментов, улучшаются его переваримость и вкусовые качества, то есть возрастает кормовая ценность. Усвояемость зерновых кормов возрастает до 90 процентов.

Организация селективного сбора отходов

Доля пищевых и других компостируемых отходов составляет 50 – 75% по массе от "хвостов", образующихся на мусоросортировочных комплексах после ручной сортировки. В связи с этим, при сборе отходов в домовладениях целесообразно разделять их на компостируемую и некомпостируемую фракции.

Раздельный сбор и вывоз компостируемых и некомпостируемых отходов позволит:

1. повысить качество компоста из пищевых отходов, использовать полученный компост в зеленом строительстве и сельском хозяйстве;

2. повысить качество некомпостируемых материалов за счет предотвращения их увлажнения;

3. облегчить процесс выделения утильных фракций из некомпостируемых материалов, улучшить условия труда сортировщиков.

Компостируемая часть отходов может подвергаться переработке в компост на существующем заводе МПБО без значительных изменений технологических схем. По мере загрузки этого завода селективно отобранными органическими отходами, высвобождающиеся мощности мусоросортировочных комплексов могут загружаться некомпостируемой частью отходов из районов, ранее вывозивших смешанные отходы на завод МПБО. Такая возможность должна быть учтена при составлении технических заданий на проектирование мусоросортировочных комплексов.

В Таганроге, ориентировочно, образуется 350 – 450 тыс. тонн в год (35 – 45% по массе) компостируемых отходов. В случае успеха программы их селективного сбора, общий уровень отбора полезных фракций, включая компостируемые отходы, составит до 65 – 85% от массы образующихся отходов (35 – 45% в домовладениях и 30 – 40% на мусоросортировочных комплексах).

Таким образом, на полигоны будет вывозиться 15 – 35% от массы образовавшихся пищевых отходов, или 150 – 350 тыс. тонн в год, которые в уплотненном виде будут занимать объем 0,125 – 0,39 млн. м3 в год, или в 2,2 – 10 раз ниже современного уровня.

Технология микробиологической биоконверсии

Технология микробиологической биоконверсии отходов предназначена для переработки сырьевых компонентов, не используемых в традиционном кормопроизводстве, в высококачественные углеводно-белковые кормовые добавки и комбикорма.

Суть технологии биоконверсии заключается в следующем: сырьевые компоненты (отходы) содержащие сложные полисахариды – пектиновые вещества, целлюлозу, гемицеллюлозу и др. подвергаются воздействию комплексных ферментных препаратов, содержащих пектиназу, гемицеллюлазу и целлюлазу. Ферменты представляют собой очищенный внеклеточный белок и способны к глубокой деструкции клеточных стенок и отдельных структурных полисахаридов, т.е. осуществляется расщепление сложных полисахаридов на простые с последующим построением на их основе легко усвояемого кормового белка.

Другими словами, трудно усваиваемое сырье переходит в легко усваиваемую животными форму путем расщепления неусваиваемой молекулы белка на простые аминокислоты.

В качестве исходных сырьевых компонентов могут быть использованы следующие отходы:

1.Щуплые и проросшие зерна, семена дикорастущих растений, некондиционное зерно.

2.Отходы консервной, винодельческой промышленности и фруктовые отходы: кожица, семенные гнезда, дефектные плоды, вытерки и выжимки, отходы винограда, отходы кабачков, обрезанные концы плодов, жмых, дефектные кабачки, отходы зеленого горошка (ботва, створки, россыпь зерен, битые зерна, кусочки листьев, створки), отходы капусты, свеклы, моркови, картофеля.

3.Отходы сахарной промышленности: свекловичный жом, меласса, рафинадная патока, фильтрационный осадок, свекловичный бой, хвостики свеклы.

4.Отходы пивоваренной и спиртовой промышленности: сплав ячменя (щуплые зерна ячменя, мякина, солома и др. примеси), полировочные отходы, частицы измельченной оболочки, эндосперма, битые зерна, солодовая пыль, пивная дробина, меласса, крахмалистые продукты (картофеля и различных видов зерна), послеспиртовая барда, бражка.

5.Отходы чайной промышленности: чайная пыль, сметки, волоски, черешки.

6.Отходы эфирно-масличной промышленности: отходы травянистого и цветочного сырья.

7.Отходы масло – жировой промышленности: подсолнечная лузга, хлопковая шелуха.

8.Отходы кондитерской и молочной промышленности.

Таким образом, любое растительное сырье и его производные, как лигноцеллюлозный источник, доступны для микробиологической биоконверсии в углеводно-белковые корма и кормовые добавки.

Наряду с переработкой кондиционных растительных и зерновых компонентов, технология позволяет восстановление и многократное увеличение прежних кормовых свойств сырья, зараженного патогенной микрофлорой, испорченного насекомыми или частично разложившегося из-за неправильного хранения.

После завершения процесса биоконверсии получаемым конечным продуктом, является кормовая добавка – углеводно-белковый концентрат (УБК), который приобретает кормовые свойства в 1,8-2,4 раза превосходящие фуражное зерно хорошего качества, а также обладает рядом существенных и необходимых свойств, которыми не обладает традиционное зерновое сырье.

Особенностью конечной продукции, получаемой по альтернативной технологии микробиологической биоконверсии, в основном является то, что по своей сути, сырье для производства кормовой добавки УБК проходит обработку в среде аналогичной микрофлоре начального участка пищевода, т.е. первый этап пищеварения – "подготовка корма к перевариванию" начинается вне пищевода. Поэтому процесс переваривания таких кормов уже непосредственно в пищеводе животных, птиц и рыбы характеризуется высокими уровнем биологических процессов и переваримостью корма, а также сниженными ферментными и энергетическими затратами организма на всем этапе пищеварения.

Таким образом получаемая кормовая добавка – УБК, отличается высокой питательностью (протеин 22…26%), более легкой усвояемостью, биологической активностью, а также ферментной, витаминной и минеральной ценностью.

Кормовая добавка УБК, используется как основной компонент при производстве комбикормов в соотношении 1:1, как добавку к грубым растительным кормам, при производстве простых кормовых смесей с измельченным фуражным зерном, отрубями, зерно отходами и пр., с нормой ввода до 25…65%.

Средние затраты на производство 1 кг. высококачественного корма по рассматриваемой технологии не превышают 1 руб., а по кормовой ценности превышают показатели фуражного зерна в 1,8-2,4 раз.

Как и в традиционных кормах, продукция, полученная по альтернативной технологии компании Биокомплекс, соответствует принятым стандартам по питательности и содержанию необходимого набора витаминов и микроэлементов, ветеринарно безопасна, сертифицирована и является экологически чистой.

В зависимости от вида исходного сырья и требований к готовой продукции, весь процесс микробиологической обработки может проходить от одного и до трех этапов, а длительность полного цикла производства может находиться в переделах от 4 до 6 суток. С увеличением длительности процесса снижаются финансовые затраты на переработку сырья и повышаются зоотехнические показатели конечной продукции.

Технология предусматривает круглогодичный режим работы предприятия, низкие требования к квалификации большинства рабочих, малые энергетические затраты.

Технология – экологически безопасная, не имеет сточных вод и выбросов.

Создание производственного комплекса для переработки отходов на основе альтернативной технологии микробиологической биоконверсии в корма может быть реализовано как для решения отдельных задач, так и многофункцинального назначения.

Кроме того, ЗАО Биокомплекс осуществляет реанимацию, модернизацию или перепрофилирование действующих и остановленных производств под выпуск комбикормов и кормовых добавок. Например, модульные фермерские комплексы могут быть смонтированы на основе имеющихся производственных помещений, оборудования колхозных кормоцехов, комбикормовых заводов и других пищевых и зерноперерабатывающих производств и пр.

Ключевым элементом технологической цепи является биореактор, в котором и осуществляется процесс микробиологической биоконверсии отходов в корма. Реакторы являются универсальными и позволяют работать с любым сырьем и получать различные кормовые добавки.

Технологическая схема производственного комплекса по микробиологической переработке растительных отходов в корма, показана на рисунке 3.

Влажная (55%) смесь различных отходов загружаются в биореактор. С момента загрузки сырья, в биореакторе процесс микробиологической биоконверсии протекает в течении 4-6 дней (в зависимости от желаемых зоотехнических параметров конечной продукции). В результате получается влажная кормовая добавка – углеводно-белковый концентрат (УБК). Затем ее сушат до влажности 8 – 10 % и измельчают. После измельчения концентрат можно использовать для производства комбикормов, где в качестве основного компонента используется УБК (65 – 25% в зависимости от рецепта и целевого назначения комбикорма). Комбикорма, полученные по технологии ЗАО "Биокомплекс" на основе кормовой добавки УБК, обладают совершенно уникальными качественными показателями:

Рис. 3: Технологическая схема микробиологической переработки растительных отходов в корма: 1 – прием сыпучего и влажного сырья; 2 – прием жидкого сырья; 3 – бункеры-дозаторы; 4 – смеситель; 5 – био-реактор; 6 – компрессор; 7 – парогенератор; 8 – сушилка; 9 – измельчитель; 10 – отгрузка в мешки.

Комбикорм обладает высокой биологической активностью, а его переваривание характеризуется более сжатым по времени процессом пищеварения и высоким уровнем биологических процессов. Таким образом, продуктивность кормления и эффективность выращивания животных, птиц и рыбы при использовании Комбикорма на основе УБК на 15-20% выше, чем при скармливании аналогичных комбикормов, приготовленных по традиционной технологии. Кроме того, комбикорм обладает лечебно-профилактическим и стимулирующим эффектом для иммунной, кроветворной систем и кишечного тракта, а также способствует удалению вредных веществ из организма (солей тяжелых металлов, радионуклидов и т.д.).

В отличие от классической технологии высокотемпературного гранулирования, комбикорм, произведенный по технологии Биокомплекс, проходит низкотемпературное гранулирование без использования пара. Что исключает деструкцию белка и обеспечивает сохранность витаминов в корме даже при длительном хранении.

Комбикорм скармливается по традиционным зоотехническим нормам и правилам, абсолютно безопасен в использовании, не вызывает аллергических симптомов и других побочных явлений или противопоказаний.

Экструзионная переработка пищевых отходов в корма

Экструзионная переработка пищевых отходов предполагает получение биологически ценного, безопасного и стойкого при хранении корма. Необходимое условие достижения этой цели – термообработка отходов, в ходе которой происходят обеззараживание и обезвоживание сырья. От правильности её проведения зависит качество получаемого корма.

Традиционно наиболее распространена многочасовая термообработка при повышенном давлении в аппаратах периодического действия, в частности в вакуумных котлах (котлах-утилизаторах Лапса) сухим (без контакта с острым паром или водой) или мокрым способом. В таких котлах сырьё медленно нагревается до температуры 11 8-1 30° С, при которой погибает основная масса бактерий, и стерилизуется в течение 30-60 минут при давлении 0,3-0,4 МПа. Затем разваренная масса сушится в течение нескольких часов под давлением 0,05-0,06 МПа при 70-80° С. Из термообработан-ных отходов получают мясо-костную, мясную, кровяную, костную, перьевую муку. Необходимо отметить, что в последнее время в странах ЕС стерилизацию проводят при температуре 1 33° С и давлении 0,3 МПа в течение 20 минут, без учёта времени на подъём и спуск давления пара в котле.

Можно выделить следующие основные недостатки традиционных технологий:

Длительность процесса получения готового продукта (до 10-1 2 часов);

Многочасовая термообработка приводит к денатурации 70-75% протеина, в результате снижается кормовая ценность продукта (он плохо усваивается птицей);

Высокая энергоёмкость: для работы установок помимо электроэнергии необходимы газ, пар и горячая вода;

Загрязнение окружающей среды неприятно пахнущими и токсическими веществами (сероводородом, сернистым газом, меркаптанами и др.);

Образование жиросодержащих сточных вод, увеличивающих нагрузку на локальные очистные сооружения.

Использование непрерывно-поточных линий для утилизации биологических отходов сокращает время получения готового продукта (мясокостной муки) до 1-2 часов и несколько повышает его пищевую ценность. Непрерывно-поточные линии различаются как по принципу нагрева сырья, так и по температурным режимам. Сырьё может нагреваться либо при непосредственном контакте с горячим жидким теплоносителем – жиром или паром, либо с использованием кон-дуктивного метода. Температура его обработки может быть как выше, так и ниже 100 С. Однако для этих линий также характерны высокая энергоёмкость, экологическая небезупречность и дополнительная нагрузка на локальные очистные сооружения.

Для получения высококачественного кормового продукта, в котором максимально сохраняется биологическая ценность исходного сырья, необходимо свести к минимуму время термообработки. При этом желательно использовать экономичные и экологически чистые технологии.

В современных экструдерах в зависимости от характера обрабатываемого материала температура может достигать 200° С, а давление – 4-5 МПа. В то же время отрицательные эффекты обработки сводятся к минимуму благодаря её кратковременности. Обрабатываемый материал находится в экструдере не более 30-90 секунд.

Развитие экструзионной техники позволило предложить новые способы утилизации отходов пищевой промышленности, зверохозяйств, свиноводства и птицеводства. В основе предлагаемых технологий лежит способ сухой экструзии, при котором нагрев экструдируемого материала происходит за счёт трения как внутри его, так и о ствол экструдера. Основную проблему представляет высокая влажность отходов (до 85%). Для её решения измельчённые отходы животного происхождения (в том числе падёж и конфискат СЭС) предварительно смешивают с растительным наполнителем. Таким путём уменьшают влажность массы, подаваемой в экструдер, до 28-30 процентов. Полученную смесь подвергают экструзионной переработке, получая пригодный для кормления свиней, птицы и пушных зверей продукт. В качестве наполнителя могут быть использованы зерно, зерноотходы, отруби, шроты. Объём наполнителя в 3-5 раз больше отходов животного происхождения и определяется их влажностью.

При прохождении смеси через компрессионные диафрагмы в стволе экструдера внутри её поднимается температура свыше 110 С и возрастает давление – более 40 атмосфер. Время прохождения смеси через экструдер не превышает 30 секунд, а в зоне максимальной температуры она находится лишь 5-6 секунд, поэтому отрицательные эффекты термообработки сведены до минимума. Вместе с тем за это время смесь:

Стерилизуется и обеззараживается (болезнетворные микроорганизмы, грибки, плесень полностью уничтожаются);

Увеличивается в объёме (вследствие разрыва молекулярных цепочек крахмала и стенок клеток при выходе из экструдера);

Гомогенизируется (процессы измельчения и перемешивания сырья в стволе экструдера продолжаются, продукт становится полностью однородным);

Стабилизируется (нейтрализуется действие ферментов, вызывающих прогоркание продукта, таких, как липаза и липоксигеназа, инактивируются антипитательные факторы, токсины);

Обезвоживается (влажность снижается на 50-70% от исходной).

В результате перевариваемость протеина достигает 90 процентов. Аминокислоты становятся более доступными вследствие разрушения в молекулах белка вторичных связей. Содержание доступного лизина достигает 88 процентов. В то же время полностью или значительно разрушаются антипитательные соединения, такие, как уреаза, ингибиторы протеаз, трипсина. Крахмал желатинизируется, что увеличивает степень его усвояемости.

Жиры равномерно распределяются по всей массе продукта, образуя комплексные соединения с крахмалом в соотношении 1:10, что повышает их доступность. Стабильность жиров повышается, поскольку разрушаются ферменты, вызывающие их окисление и прогоркание, такие, как липаза и липоксидаза, а лецитин и токоферолы, являющиеся природными стабилизаторами, сохраняют полную активность. Перевариваемость пищевых волокон возрастает вследствие химической модификации.

Жёсткость экструзионной переработки, уничтожающей патогенную микрофлору, позволяет получать качественный корм, даже если наполнитель представлен некондиционными зернопродуктами. Стерильность получаемого корма особенно важна при откорме молодняка, так как до 90% поголовья гибнет из-за болезней желудочно-кишечного тракта или инфекций, занесённых через пищеварительную систему.

Впервые подобная технология переработки отходов птицеводства и животноводства была предложена американскими специалистами в 1995 году (по образному выражению, прозвучавшему на одном из семинаров, американцы экструдируют всё, что видят).

Экструзионная технология утилизации биологических отходов, разработанная компанией Wenger Manufacturing (США), включает предварительную термообработку смеси в кондиционере экструдера, экструдирование с пропариванием и сушку экструдата. Необходимость операций пропарки и сушки удорожает и усложняет процесс, поскольку помимо электроэнергии требуется применение других энергоносителей (пара и газа).

Технология компании Insta Pro (США) не требует пропаривания, однако влажность получаемого экструдата превышает 14-16 процентов. Поскольку хранение продукта влажностью более 14,5% не допускается, для обеспечения достаточно длительных сроков хранения экструдат также дополнительно подсушивают. Эта технология была внедрена в 2002 году в ОАО ПХ "Лазаревское" Тульской области. Несмотря на имеющиеся недостатки, она позволила хозяйству утилизировать отходы мясопереработки и падежа свинокомплекса и получить дешёвую и стерильную белковую кормовую добавку. Снизились затраты на корма, производство стало безотходным.

Недостатки вышеупомянутых технологий удалось преодолеть коллективу российских специалистов под руководством В. Плитмана, предложившего способ принудительного пневмоотвода пара из экструдата. Метод позволяет исключить использование специальных сушилок и разнородных источников энергии, уменьшить время температурного воздействия на продукт. В результате удаётся получить продукт, пригодный для длительного хранения (не менее 6 месяцев) даже при значительной влажности исходного сырья.

Технологическую линию экструзионной переработки отходов можно спроектировать практически на любую производительность. Полный технологический процесс состоит из:

1) измельчения;

2) смешивания измельчённой массы в определённой пропорции с растительным наполнителем;

3) экструзии смеси;

4) охлаждения;

5) затаривания.

Для получаемого продукта (белковой кормовой добавки) характерны:

Высокая усвояемость (порядка 90%);

Обменная энергия – 290-31 0 ккал в 100 г;

Бактериальная чистота – не более 20 тыс. ед. (при норме 500 тыс. ед.);

Влажность – не выше 14%;

Длительный срок хранения – не менее 6 месяцев.

Себестоимость получаемого продукта определяется в основном стоимостью наполнителя. При этом энергозатраты на переработку 1 кг биологических отходов не превышают 80 копеек, тогда как при переработке в котлах-утилизаторах – не ниже 4 рублей.

Использование экструзионных технологий позволяет:

Интенсифицировать производственный процесс;

Снизить энергозатраты (кроме электроэнергии для обеспечения технологического процесса не нужны другие энергоносители: газ, пар, горячая вода);

Уменьшить трудовые затраты;

Повысить степень использования сырья;

Улучшить усвояемость продуктов;

Снизить микробиологическую обсеменённость продуктов;

Уменьшить загрязнение окружающей среды (отсутствуют выбросы в атмосферу, стоки и вторичные отходы).

Потенциально возможные доходы хозяйств от использования кормовых добавок, полученных из собственных биологических отходов, могут быть сравнимы с доходами от реализации основных продуктов производства.

Литература

1.Решение городской думы г.Таганрога от 28.06.2007г. № 507 "Об утверждении Правил обращения с отходами производства и потребления на территории муниципального образования г.Таганрог".

2.Абрамов Н.Ф. Перспективы селективного сбора пищевых отходов Москвы // Чистый город. – 2008. – N 1.

3.Вайсберг Л. А. и др. Новые технологии переработки бытовых и промышленных отходов, "Вторичные ресурсы", N 5 -6, 2001.

4.Анализ различных технологий термической переработки твердых бытовых отходов / Эскин Н.Б., Тугов А.Н., Хомутский А.Н. и др. // Энергетик. – 2004. – N 9.

5.Андреева И.П., Карцева Е.В., Потапов И.И. Технологии переработки бумажных отходов // Эколог. системы и приборы. – 2009. – N 7.

Дмитриев Ю. "Книга природы" М., 2009.

6.Бабков-Эстеркин В.И. Пищевые отходы – экологические проблемы и направления их решения // Междунар. конгр. по пробл. окруж. среды и урбаниз. ЕВРО"98 "Человек в большом городе 21 в.", Москва, 1-4 июня, 2008.

7.Бартоломей А.А., Брандл Х., Пономарев А.Б. Основы проектирования и строительства хранилищ отходов: учеб. пособие. – 2-е изд., перераб. и доп. – Пермь: Перм. гос. техн. ун-т, 2002.

8.Белоцерковский Г.М., Калмыков Ю.П. Современные отечественные мусоровозы. Система машин, разработанная АОЗТ "Экомтех" // Экол. системы и приборы. – 2008. – N 4.

9.Выбор оптимальных технологий переработки пищевых отходов / Яковлев В.А., Лихачев Ю.М., Гусаров В.В. и др. // Комплексная переработка твердых бытовых отходов – наиболее передовая технология: сб. тр. – СПб: СПбГТУ, 2005.

10.Гарин В.М., Медиокритский Е.Л., Хвостиков А.Г. Утилизация твердых бытовых отходов в крупных городах // Безопасность жизнедеятельности: Охрана труда и окруж. среды / Ростов н/Д гос. акад. с.-х. маш. – Ростов-на-Дону, 2003.

11.Гарин В.М., Хвостиков А.Г. Тенденции в решении проблемы утилизации отходов // Безопасность жизнедеятельности. Охрана труда и окружающей среды: межвуз. сб. науч. тр. Вып.3 / Рост.-на-Дону гос. акад. с.-х. машиностроения. – Ростов-на-Дону, 2005.

12.Грибанова Л.П., Коробейникова В.А. Захоронение и утилизация отходов в Московском регионе // Экол. вестн. России. – 2009. – N 6.

13.Джангиров Д.А. Концепция программы по индустриальной переработке ТБО // Проблемы окружающей среды и природных ресурсов: обзорная информация / ВИНИТИ. – 2007. – Вып.4.

14.Единая политика обращения с отходами в Санкт-Петербурге и Ленинградской области. Под редакцией член-корр. РАН С. Г. Инге-Вечтомова, Ю.И. Скорика, засл. эколога РФ Флоринской Т. М. – СПб.: НИИ Химии СПб ГУ, 2000.

15.Казакова М.В. "Человек, природа, мир" Рязань, 2007.

16.Карабельников Т.П. "Экологические основы природопользования"

Обращение с отходами в Таганроге

17.Отходы областного города. Сбор и утилизация. Дарулис П. В. – Смоленск, 2000.

18.Охрана окружающей среды, природопользование и обеспечение экологической безопасности в Санкт – Петербурге в 2000 году / Под редакцией Д. А. Голубева, Н. Д. Сорокина. – СПб., 2001.

19.Охрана окружающей среды, природопользование и обеспечение экологической безопасности в Санкт – Петербурге в 1998 году / Под редакцией А. С. Баева, Н. Д. Сорокина. – СПб., 1999.

20.Плешаков А. А. "Зеленые страницы" М., 1994г.

21.Плешаков А.А. "Экология" М., 2005.

22.Твердые бытовые отходы (сбор, транспорт, обезвреживание). Справочник.

23.Систер В. Г., Мирный А. Н., Скворцов Л. С. и др. – М., 2001.

Правильная утилизация отходов - огромный шаг на пути улучшения экологии.

Существует не один способ переработки мусора.

Главная задача каждого из методов состоит в том, чтобы выполнить поставленную задачу, не допуская распространения вредных бактерий и микроорганизмов. При этом нужно минимизировать и выделяющиеся при самой утилизации вредные вещества.

Рассмотрим варианты уничтожения отходов и оценим, насколько каждый из них эффективен.

Захоронение отходов на полигонах

Полигоны служат для сбора и переработки мусора природным путем. На многих из них практикуется очень простая и понятная система утилизации: как только соберется определенный объем мусора, его закапывают. Мало того, что этот метод устаревший, он является бомбой замедленного действия, ведь есть такие материалы, которые не разлагаются десятилетиями.

Те немногие полигоны, которые имеют в своем распоряжении цеха по , работают следующим образом: приезжающие машины регистрируют на пункте пропуска. Там же измеряется объем кузова, чтобы определить стоимость утилизации; измеряется уровень радиации. Если он превышает допустимые нормы, машину не пропускают.

От пропускного пункта машина направляется в цех сортировки мусора. Сортировка происходит вручную: машина подает мусор на транспортировочную ленту, а работники оттуда выбирают бутылки, бумагу и т. д. Отсортированные материалы складывают в контейнеры без дна, из которых мусор попадает сразу в клетку и под пресс. Когда процесс окончен, оставшиеся отходы (не вошедшие ни в одну из категорий) также спрессовывают и отвозят непосредственно на свалку. Так как долго разлагающиеся материалы отсортированы, оставшийся мусор можно засыпать землей.

Пластиковые бутылки, картон и некоторые другие отходы покупаются предприятиями для производства. Например, из пластиковых бутылок и контейнеров изготовляют сетки для овощей, из стеклянных бутылок и осколков - новые изделия, из картона - туалетную бумагу.

Материалы, которые принимают на полигонах:

  • Бытовые отходы жилых домов, учреждений, предприятий, занимающихся торговлей пром- и продтоваров.
  • Отходы строительных организаций, которые могут быть приравнены к твердым бытовым отходам.
  • Могут приниматься промышленные отходы 4 класса опасности, если их количество не превышает третьей части принимаемого мусора.

Отходы, ввоз которых запрещен на полигон:

  • Строительный мусор 4 класса опасности, который содержит асбест, золу, шлаки.
  • Промышленный мусор 1, 2, 3 класса опасности.
  • Радиоактивные отходы.
  • Полигоны устраиваются согласно строгим санитарным нормам и только на тех участках, где риск заражения человека бактериями через воздушное или водное пространство сводится к минимуму. Занимаемая площадь рассчитана примерно на 20 лет.

Компостирование

Этот метод переработки знаком огородникам, которые для удобрения растений применяют перегнившие органические материалы. Компостирование отходов - метод утилизации, основанный на естественном разложении органических материалов.

Сегодня известен способ компостирования даже неотсортированного потока бытовых отходов.

Из мусора вполне реально получить компост, который впоследствии мог бы использоваться в сельском хозяйстве. В СССР было построено множество заводов, но прекратили они функционировать из-за большого количества тяжелых металлов в мусоре.

Сегодня технологии компостирования в России сводятся к сбраживанию неотсортированного мусора в биореакторах.

Полученный продукт нельзя использовать в сельском хозяйстве, поэтому он находит применение тут же, на свалках - им покрывают отходы.

Этот метод утилизации считается эффективным при условии, что завод оснащен высокотехнологичным оборудованием. Из отходов вначале удаляют металлы, аккумуляторы, а также пластик.

Преимущества мусоросжигания:

  • меньше неприятных запахов;
  • уменьшается количество вредных бактерий, выбросов;
  • полученная масса не привлекает грызунов и птиц;
  • есть возможность при сжигании получать энергию (тепловую и электрическую).

Недостатки:

  • дорогостоящее строительство и эксплуатация мусоросжигательных заводов;
  • строительство занимает не менее 5 лет;
  • при сжигании отходов в атмосферу попадают вредные вещества;
  • зола от мусоросжигания токсична и не может храниться на обычных свалках. Для этого нужны специальные хранилища.

По причине нехватки городских бюджетов, несогласованности с мусороперерабатывающими компаниями и по другим причинам в России пока не налажено производство мусоросжигающих заводов.

Пиролиз, его виды и преимущества

Пиролизом называют сжигание мусора в специальных камерах, препятствующих доступу кислорода . Есть два вида :

  • Высокотемпературный - температура сжигания в печи свыше 900°С.
  • Низкотемпературный - от 450 до 900°С.

При сравнении обычного сжигания как метода утилизации мусора и низкотемпературного пиролиза можно выделить следующие преимущества второго способа:

  • получение пиролизных масел, которые впоследствии используют при производстве пластмасс;
  • выделение пиролизного газа, который получают в достаточном количестве для обеспечения производства энергоносителей;
  • выделяется минимальное количество вредных веществ;
  • установки для пиролиза перерабатывают почти все виды бытовых отходов, но мусор предварительно должен быть отсортирован.

Высокотемпературный пиролиз в свою очередь имеет достоинства перед низкотемпературным:

  • не требуется сортировать отходы;
  • масса зольного остатка значительно меньше, и его можно использовать в промышленных и строительных целях;
  • при температуре горения свыше 900°С разлагаются опасные вещества, не попадая в окружающую среду;
  • полученные пиролизные масла не требуют очистки, так как они имеют достаточную степень чистоты.

Преимущества есть у каждого из методов переработки мусора, но все упирается в стоимость установок: чем эффективнее и выгоднее метод утилизации, тем дороже его установка и длиннее срок окупаемости. Несмотря на эти недостатки, государство стремится реализовать проекты по эффективной и безопасной переработке мусора, понимая: за этими технологиями будущее.

Страны Евросоюза, в отличие от РФ, испытывают дефицит сырья по всем позициям и имеют многолетний опыт по его регенерации из отходов.

Многочисленные хартии по защите окружающей среды в ЕС призваны уменьшить количество полигонов для хранения мусора, так как они требуют больших площадей и дорогостоящей технологии хранения.

Гораздо выгоднее оказалось освоить глубокую переработку отходов и превратить этот процесс в доходный бизнес.

Вторичная переработка промышленных и бытовых отходов, содержащих полимерные материалы — отличная бизнес-идея, но относительно новая, поэтому конкуренция в нем развита слабо .

Порог начальных капиталовложений для старта в этой отрасли невысок.

Он увеличивается в зависимости от глубины переработки исходного сырья, но одновременно с ним растет рентабельность.

Рециклинг полимеров при грамотном подходе станет отличным направлением финансирования, особенно в кризисных промежутках времени. Это обусловлено низкой стоимостью исходного сырья по отношению к первичным материалам.

Раздельный сбор отходов еще не скоро будет внедрен в РФ, так как у населения отсутствует культура сохранения жилого пространства в чистоте .

Это сильно тормозит развитие всей отрасли.

Так как не сортированный бытовой мусор представляет собой очень сомнительное сырье для относительно несложных и дешевых перерабатывающих мощностей, то желающих занять нишу по его рециклингу не так много.

Самым верным на первом этапе будет накопление и сортировка сырья. Это поможет научиться ориентироваться в марках пластиков, создать сырьевую базу для будущего производства .

О маркировке пластмасс вы можете прочесть в статье «Как сортировать пластик для переработки?»

Промышленное помещение

Для сбора, сортировки и переработки мусора необходима площадь, и чем больше - тем лучше. Сначала нужно не менее 50 квадратных метров. Этого будет достаточно лишь на первых порах, чтобы начать простейшую переработку, которая заключается в сортировке сырья .

Под пресс понадобится еще не менее 20 метров площади; чем сложнее будет становиться оборудование, тем больше станет занимаемая им площадь.

Такой вид бизнеса с глубокой переработкой требует помещение от 1000 квадратных метров и более. Требования для цеха включают наличие ВРУ, систем аварийной сигнализации и пожаротушения, подведенных воды и канализации.

Размер требуемой площади можно систематизировать при помощи следующего списка :

  1. Цех сортировки и первичной обработки вторсырья -100 м 2 .
  2. Первичная мойка и дробление сырья - 500 м 2 .
  3. Термопереработка и изготовление вторичного гранулята — 100 м 2 .
  4. Производство изделий с использованием регенерированного полимерного гранулята (для одной единицы оборудования) - 100 м 2 .

Несмотря на большую суммарную площадь цеха не стоит этого бояться, так как половину из 1000 м 2 займут участки хранения промежуточной фракции.

Оборудование

Такие отходы, как пластиковая ПЭТ бутылка, если это не преформа, занимают очень много места .

Для хранения этого сырья его обрабатывают компактором, или попросту прессуют.

Простейший механический рычажный пресс несложно изготовить самостоятельно и организовать процесс в домашних условиях.

Промышленное прессовое оборудование очень дорого стоит .

Для начинающего предпринимателя лучшим выбором станет бывший в употреблении пресс, который можно приобрести через интернет объявления.

Не стоит пугаться подержаного оборудования такого класса, оно примитивно по своему устройству, а его ремонт не представляет особой сложности.

Сложнее обстоит дело с глубокой переработкой. Это не под силу многим частным предпринимателям.

Для получения вторичного пуха ПЭТ необходимый минимум станков включает :

  1. Шредер роликовый.
  2. Дробилка роторная.
  3. Мойка флокационная.
  4. Сушилка ротационная.
  5. Агламератор полимеров.
  6. Гранулятор стренговый (более дорогой вариант - гранулятор с водокольцевой резкой).
  7. Экструдер или термопластавтомат для полимеров.

Такой обширный список станков подразумевает территориальную разбросанность производителей и поставщиков.

Самыми известными марками в нашей стране являются фирмы производители из Тайваня и «Поднебесной» PRC.

Это такие гиганты как :

  1. «Хемингстоун» Тайвань.
  2. «Кингсил» КНР.
  3. «ЛюМенг» Тайвань.
  4. «ДиинКуин» Тайвань.

Есть и отечественные производители. Качество их оборудования не чета даже производителям из Китая, но и оно находит своего покупателя.

Более известны такие фирмы как:

  1. «Алеко-Полимер» — г. Ростов-на-Дону.
  2. «Назаров-Систем» — г. Сочи.
  3. ООО «Мастерпресс» — г. Москва.
  4. ООО «Промышленные полимерные технологии».
  5. ООО «Бум полимеров».

На поверку многие из них оказываются лишь торговцами сомнительным контрафактом из Юго-восточной Азии.

При выборе оснащения для будущего производства главным и важнейшим является помощь квалифицированного специалиста.

Неправильная конфигурация, ошибочный выбор производителя станков будет стоить очень дорого, вплоть до банкротства. Очень много случаев, когда весьма состоятельный инвестор нес огромные убытки именно на этапе оснащения производства.

Порядок цен на рынке оборудования следующий:

  1. Шредер - от 400 до 800 тыс.руб.
  2. Дробилка роторная - от 300 до 600 тыс. руб.
  3. Мойка флокационная - от 1,5 до 10 млн.руб.
  4. Сушилка ротационная - от 100 до 800 тыс.руб.
  5. Агламератор полимеров - от 800 тыс.руб. до 1,5 млн.руб.
  6. Гранулятор стренговый - от 1,5 до 5 млн.руб.
  7. Экструдер полимеров - от 1 млн.руб. до 20 млн.руб.

Эти цены очень относительны, так как состав технологической цепи строго индивидуален. К основному оборудованию необходима спецоснастка, которая может стоить больше основного оснащения.

Особенность калькуляции оборудования цеха заключается в персонифицированном подходе к конкретному виду готовой продукции , региону его расположения, стоимости электроэнергии, наличию трудоспособного и квалифицированного населения.

Источники сырья

Основным источником вторичного сырья для европейских переработчиков является сортировочный центр.

Отечественные же предприниматели не имеют такой возможности, а «полигонка», взятая на мусорных полигонах, практически непригодна для вторичного использования из-за токсичности и разложения.

В России малый бизнес прочно занял нишу поставщиков самостоятельно накопленных и отсортированных полимеров .

Организован такой вид деятельности незатейливо. ИП, владеющий своим грузовым транспортом, занимается коммерческим сбором вторсырья у мелких предприятий, магазинов, торговых баз, заводов, кафе и других организаций, где они накапливаются.

Лицензирование деятельности

Вопреки мнению многих представителей контролирующих органов, утилизация и переработка полимерных материалов не являются лицензируемой деятельностью .

Как бы ни хотелось погреть руки госчиновникам, это им не удастся.

Если переработчик вторсырья честно показывает свои хозяйственные операции, выполняет требования КЗОТ, никто не регламентирует характер переработки.

По своей сути вторичные полимеры не представляют какой-либо опасности для окружающих и их здоровья, если они не используются в пищевом производстве.

А вот при таких нарушениях возникают уже уголовные последствия, так как вторичное использование ПЭТ, полиэтилена, полипропилена и т. д. пищевой упаковке запрещено санэпиднормами.

Бизнес-план цеха

Исходя из спроса на конкретное изделие, содержащее полимер, рассчитывается возможность применения в нем вторичного сырья. Примером служит изготовление крупноячеистой полиэтиленовой сетки для садоводов и строителей.

Бизнес-план по переработке пластиковых отходов в гранулы начинается с расчета вероятной прибыли:

  1. Стоимость первичного полипропилена составляет 120 р./кг., вторичного 80 р./кг.
  2. Оптовая стоимость килограмма готового изделия из первичного материала 200 р./кг.
  3. Накладные расходы в цене продажи до 30%.
  4. Сопутствующие расходы на рекламу, лоббирование интересов у продавцов сырья (из-за отсутствия раздельного сбора отходов и госконтроля рынок вторсырья очень коррумпирован) 5%.

Итогом продажи продукции из первичного материала, по отзывам владельцев такого бизнеса, будет, в лучшем случае, 5% чистой прибыли.

Так как стоимость вторичного гранулята составляет 70%-80% от первичного материала, то его использование увеличит общую рентабельность .

Однако, готовый вторичный гранулят нужной марки — большая редкость, и рассчитывать на очень высокие прибыли не стоит.

В лучшем случае это не более 10% процентов чистой прибыли с оборота.

Калькуляция бизнес-плана цеха по производству полимерной сетки из вторсырья:

  1. Стоимость оборудования , состоящего из экструдера полиэтиленовой сетки, дробилки сопутствующих отходов, вспомогательных механизмов, складской оснастки, инструмента персонала - 3 млн.руб.
  2. Аренда подходящего помещения в 200 м 2 - 60 тыс.руб.
  3. Зарплата персонала из 4 человек - 120 тыс.руб.
  4. Накладные расходы за электроэнергию, производственные издержки - 100 тыс.руб.
  5. Валовая годовая прибыль при круглосуточной работе - 31 млн.руб.
  6. Годовая стоимость потребляемой вторичной гранулы - 24,8 млн.руб.
  7. Прибыль до уплаты налога — 2,84 млн.руб.
  8. Срок окупаемости предприятия - от 3 до 4 лет.

Технологии переработки пластиковых отходов

Рециклинг полимеров осуществляется благодаря их термопластичности и возможности повторного формования из них готовых изделий.

Такой процесс может повторяться до пяти-семи раз, до полного разрушения молекулярной структуры материала.

Технология регенерации заключается в очистке вторсырья от сторонних загрязнений, измельчении и термической грануляции.

Подробнее обо всех этих процессах читайте в статье «Технология переработки пластика».

Готовые проекты и идеи по рециклингу пластмасс

Ранжируя бизнес-проекты по уровню вложений, можно выделить четыре основных направления :

  1. Сбор и сортировка отходов полимеров с последующей продажей крупным переработчикам.
  2. Производство вторичных хлопьев для реализации.
  3. Полный спектр рециклинговых мероприятий с производством готового вторичного гранулята.
  4. Производство полимерной продукции по полному циклу на основе вторичной гранулы.

Сбор и сортировка отходов

Для начала этой деятельности нужно лишь открыть ИП и арендовать (по возможности — купить) грузовой автомобиль.

Остальное зависит от связей с владельцами крупных торговых точек , ведь они станут основным поставщиком сырья.

Не менее важные для начинающего бизнесмена факторы — готовность к тяжелой физической работе и терпение.

Производство вторичных хлопьев

В этом случае необходима линия мойки. Стоимость такого оборудования начинается от 2 млн.руб., поэтому здесь нужен хороший старт.

Полный цикл с переработкой в гранулы

Билет в эту сферу стоит от 10 млн.руб. Этап переработки в гранулы станет развитием хорошо поставленных предыдущих через восемь-десять лет успешной работы.

Производство полимерной продукции

Продукцией такого производства может быть:

  • упаковка;
  • технические емкости и трубы;
  • пластиковые сетки;
  • термоусадочные пленки;
  • электрический кабель;
  • обувь из ПВХ и ЭВА.

Этот этап переработки самый капиталоемкий, но и самый рентабельный. Чтобы дойти до него и прочно удержаться на рынке, может потребоваться более 10 лет.

До этого момента владельцу бизнеса необходимо продумать, куда сбывать переработанный пластик.



Читайте также: