Разделение круга на равные части. Деление окружности на равные части с помощью циркуля и линейки

Можно разделить двумя способами. Для одного из них вам понадобится циркуль и линейка, а для второго - линейка и транспортир. Какой вариант предпочтительнее - решать вам.

Вам понадобится

  • - циркуль
  • - линейка
  • - транспортир

Инструкция

Пусть дан круг радиуса R. Надо поделить его на три равные части с помощью циркуля. Раскройте циркуль на величину радиуса круга. Можно воспользоваться при этом линейкой, а можно поставить иглу циркуля в центр круга, а ножку отвести до окружности, описывающей круг. Линейка в любом случае еще пригодится позже.Установите иглу циркуля в произвольном месте на окружности, описывающей круг, и грифелем нарисуйте небольшую дугу, пересекающую внешний контур круга. Затем установите иглу циркуля в найденную точку пересечения и еще раз проведите дугу тем же радиусом (равным радиусу круга). Повторяйте эти действия, пока следующая точка пересечения не совпадет с самой первой. Вы получите шесть точек на окружности, расположенных через равные промежутки. Остается выбрать три точки через одну и линейкой соединить их с центром круга, и вы получите поделенный натрое круг.

Чтобы поделить круг на три части с помощью транспортира, достаточно вспомнить, что полный оборот вокруг своей оси составляет 360°-. Тогда угол, соответствующий одной трети круга, составляет 360°-/3 = 120°-. Теперь отложите три раза угол в 120°- на внешней стороне круга и соедините полученные точки на окружности с центром.

Обратите внимание

Если вы соедините точки не с центром, а между собой, то получите равносторонний треугольник.

Способ, описанный в первом шаге, также позволяет получить деление круга на шесть равных частей.

Деление окружности на равные части, построение правильных многоугольников

Деление окружности на 4 и 8 равных частей

Концы взаимно перпендикулярных диаметров АС и BD (рис. 1) делят окружность с центром в точке О на 4 равные части. Соединив концы этих диаметров, можно получить квадрат A ВС D .

Если угол СОА между взаимно перпендикулярными диаметрами АЕ и С G (рис. 2) разделить пополам и провести взаимно перпендикулярные диаметры DH и BF , то их концы разделят окружность с центром в точке О на 8 равных частей. Соединив концы этих диаметров, можно получить правильный восьмиугольник ABCDEFGH .

Рис. 1 Рис. 2

Деление окружности на 3, 6 и 12 частей

Для деления окружности на 6 равных частей используют равенство сторон правильного шестиугольника радиусу описанной окружности. Если задана окружность с центром в точке О (рис. 3) и радиусом R , то из концов одного из ее диаметров (точек А и D ), как из центров, проводят дуги окружностей радиусом R . Точки пересечения этих дуг с заданной окружностью разделят ее на 6 равных частей. Последовательно соединив найденные точки, получают правильный шестиугольник ABCDEF .

Если окружность в центре с точкой О (рис.4) необходимо разделить на 3 равные части, то радиусом, равным радиусу этой окружности, следует провести дугу лишь из одного конца диаметра, например точки D . Точки В и С пересечения этой дуги с заданной окружностью, а так же точка А разделят последнюю на 3 равные части. Соединив точки А , В и С , можно получить равносторонний треугольник АВС .

Рис. 3 Рис. 4

Чтобы разделить окружность на 12 частей, деление окружности на 6 частей повторяют дважды (рис. 5), используя в качестве центров концы взаимно перпендикулярных диаметров: точки А и G , D и J . Точки пересечения проведенных дуг с заданной окружностью разделят ее на 12 частей. Соединив построенные точки, можно получить правильный двенадцати угольник.

Рис. 5

Деление окружности на 5 частей

О (рис. 6) на 5 частей, поступают следующим образом. Один из радиусов окружности, например ОМ , делят пополам описанным ранее способом. Из середины отрезка ОМ точка N радиусом R 1 , равным отрезку А N , проводят дугу окружности и отмечают точку Р пересечения этой дуги с диаметром, которому принадлежит радиус ОМ . Отрезок АР равен стороне вписанного в окружность правильного пятиугольника. Поэтому из конца А диаметра, перпендикулярного к ОМ , радиусом R 2 , равным отрезку АР , проводят дугу окружности. Точки В и Е пересечения этой дуги с заданной окружностью позволяют отметить две вершины пятиугольника.

Еще две вершины ( С и D ) являются точками пересечения дуг окружностей радиусом R 2 с центрами в точках В и Е с заданной окружностью с центром в точки О . Вершины правильного пятиугольника ABCDE делят заданную окружность на 5 равных частей.

Рис. 6

Деление окружности на 7 частей

Чтобы разделить окружность с центром в точке О (рис. 6) на 7 частей, необходимо из точки 1 провести вспомогательную дугу радиусом R , равным радиусу данной окружности, которая пересечет окружность в точке М . Из точки N опускаю перпендикуляр на горизонтальную осевую линию. Из точки А радиусом, равным радиусу MN , делают по окружности 7 засечек и получают семь искомых точек, соединив которые получают правильный семиугольник ABCDEFG .

Рис. 7

Деление окружности на произвольное число равных частей

Если ни в одном из рассмотренных ранее вариантов не удовлетворяет условию поставленной задачи, то используют прием, позволяющий разделить окружность на произвольное число равных частей и построить соответственно вписанные в нее правильные многоугольники с произвольным числом сторон.

Рассмотрим такое построение на примере деления окружности с центром в точке О (рис. 8а) на 7 равных частей. Сначала необходимо провести два взаимно перпендикулярных диаметра, один из которых, например проходящий через точку А , следует разделить на 7 равных частей, ограниченными точками 1…7. Из точки А , как из центра, радиусом R равным диаметру заданной окружности, надо провести дугу, пересечение которой с продолжением второго диаметра определит точки Р 1 и Р 2 . Затем через точки Р 1 и Р 2 (рис.8б), и четные точки, полученные при делении диаметра А7 (точки 2. 4 и 6), проводят прямые. Точки В , С , D и Е , F , G пересечения этих прямых с заданной окружностью и точка А делят окружность с центром О на 7 равных частей. Последовательно соединив построенные точки можно изобразить вписанный в окружность правильный семиугольник.

Рис. 8

Деление окружности на три равные части. Устанавливают угольник с углами 30 и 60° большим катетом параллельно одной из центровых линий. Вдоль гипотенузы из точки 1 (первое деление) проводят хорду (рис. 2.11, а ), получая второе деление – точку 2. Перевернув угольник и проведя вторую хорду, получают третье деление – точку 3 (рис. 2.11, б ). Соединив точки 2 и 3; 3 и 1 прямыми, получают равносторонний треугольник.

Рис. 2.11.

а, б – с помощью угольника; в – с помощью циркуля

Ту же задачу можно решить с помощью циркуля. Поставив опорную ножку циркуля в нижний или верхний конец диаметра (рис. 2.11, в ), описывают дугу, радиус которой равен радиусу окружности. Получают первое и второе деления. Третье деление находится на противоположном конце диаметра.

Деление окружности на шесть равных частей

Раствор циркуля устанавливают равным радиусу R окружности. Из концов одного из диаметров окружности (из точек 1, 4 ) описывают дуги (рис. 2.12, а, б ). Точки 1, 2, 3, 4, 5, 6 делят окружность на шесть равных частей. Соединив их прямыми, получают правильный шестиугольник (рис. 2.12, б ).

Рис. 2.12.

Ту же задачу можно выполнить с помощью линейки и угольника с углами 30 и 60° (рис. 2.13). Гипотенуза угольника при этом должна проходить через центр окружности.

Рис. 2.13.

Деление окружности на восемь равных частей

Точки 1, 3, 5, 7 лежат на пересечении центровых линий с окружностью (рис. 2.14). Еще четыре точки находят с помощью угольника с углами 45°. При получении точек 2, 4, 6, 8 гипотенуза угольника проходит через центр окружности.

Рис. 2.14.

Деление окружности на любое число равных частей

Для деления окружности на любое число равных частей пользуются коэффициентами, приведенными в табл. 2.1.

Длину l хорды, которую откладывают на заданной окружности, определяют по формуле l = dk, где l – длина хорды; d – диаметр заданной окружности; k – коэффициент, определяемый по табл. 1.2.

Таблица 2.1

Коэффициенты для деления окружностей

Чтобы разделить окружность заданного диаметра 90 мм, например, на 14 частей, поступают следующим образом.

В первой графе табл. 2.1 находят число делений п, т.е. 14. Из второй графы выписывают коэффициент k, соответствующий числу делений п. В данном случае он равен 0,22252. Диаметр заданной окружности умножают на коэффициент и получают длину хорды l= dk = 90 0,22252 = 0,22 мм. Полученную длину хорды откладывают циркулем-измерителем 14 раз на заданной окружности.

Нахождение центра дуги и определение величины радиуса

Задана дуга окружности, центр и радиус которой неизвестны.

Для их определения нужно провести две непараллельные хорды (рис. 2.15, а ) и восставить перпендикуляры к серединам хорд (рис. 2.15, б ). Центр О дуги находится на пересечении этих перпендикуляров.

Рис. 2.15.

Сопряжения

При выполнении машиностроительных чертежей, а также при разметке заготовок деталей на производстве часто приходится плавно соединять прямые линии с дугами окружностей или дугу окружности с дугами других окружностей, т.е. выполнять сопряжение.

Сопряжением называют плавный переход прямой в дугу окружности или одной дуги в другую.

Для построения сопряжений надо знать величину радиуса сопряжений, найти центры, из которых проводят дуги, т.е. центры сопряжений (рис. 2.16). Затем нужно найти точки, в которых одна линия переходит в другую, т.е. точки сопряжений. При построении чертежа сопрягающиеся линии нужно доводить точно до этих точек. Точка сопряжения дуги окружности и прямой лежит на перпендикуляре, опущенном из центра дуги на сопрягаемую прямую (рис. 2.17, а ), или на линии, соединяющей центры сопрягаемых дуг (рис. 2.17, б ). Следовательно, для построения любого сопряжения дугой заданного радиуса нужно найти центр сопряжения и точку (точки ) сопряжения.

Рис. 2.16.

Рис. 2.17.

Сопряжение двух пересекающихся прямых дугой заданного радиуса. Даны пересекающиеся под прямым, острым и тупым углами прямые линии (рис. 2.18, а ). Нужно построить сопряжения этих прямых дугой заданного радиуса R.

Рис. 2.18.

Для всех трех случаев можно применять следующее построение.

1. Находят точку О – центр сопряжения, который должен лежать на расстоянии R от сторон угла, т.е. в точке пересечения прямых, проходящих параллельно сторонам угла на расстоянии R от них (рис. 2.18, б ).

Для проведения прямых, параллельных сторонам угла, из произвольных точек, взятых на прямых, раствором циркуля, равным R, делают засечки и к ним проводят касательные (рис. 2.18, б ).

  • 2. Находят точки сопряжений (рис. 2.18, в). Для этого из точки О опускают перпендикуляры на заданные прямые.
  • 3. Из точки О, как из центра, описывают дугу заданного радиуса R между точками сопряжений (рис. 2.18, в).

1. К РАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1.1. Геометрические построения

Деление окружности на равные части

Некоторые детали имеют элементы, равномерно распределенные по окружности. При выполнении чертежей деталей, имеющих подобные элементы, необходимо уметь делить окружность на равные части. Приемы деления окружности на равные части приведены на рис. 1

Рис. 1. Деление окружности на равные части

С достаточной точностью можно делить окружность, на любое число равных частей пользуясь таблицей коэффициентов для подсчета длины ходы.

По количеству равных отрезков на окружности (таблица 1) находим соответствующий коэффициент. При перемножении полученного коэффициента на диаметр окружности, получаем длину хорды, которую циркулем откладываем на окружности.

Таблица 1 - Коэффициент для определения длинны хорды

Количество частей окружности

Коэффициент

Выполнение сопряжения между двумя линиями

При вычерчивании контуров технических деталей и в других технических построениях часто приходится выполнять сопряжения (плавные переходы) от одних линий к другим. Сопряжение двух сторон угла дугой заданного радиусу дуги R выполняют в следующей последовательности:

- параллельно сторонам угла на расстоянии, равном R, проводят две вспомогательные прямые линии;

- точка пересечения этих прямых будет центром сопряжения;

- из центра сопряжения выполняют перпендикуляры на заданные прямые;

- точки пересечения перпендикуляров с заданными прямыми называют точками сопряжения;

- из центра сопряжения строят дугу радиусом R, соединяя точки сопряжения.

На рис. 2 приведены примеры построения сопряжений, когда задан радиус дуги сопряжения. В этом случае необходимо определить центр сопряжения и точки сопряжения. Обводку контура детали производят с помощью циркуля.

Рис. 2. Приемы построения сопряжений

В технике часто приходится вычерчивать кривые линии, составленные из большого количества малых дуг окружностей с постепенным изменением радиуса их кривизны. Такие линии невозможно провести циркулем. Эти кривые вычерчивают с помощью лекал и называют лекальными. Необходимо изучить закономерность образования лекальной кривой и нанести на чертёж ряд принадлежащих ей точек. Точки соединяют плавной кривой тонкой линией от руки, а обводку выполняют с помощью лекала.

Для обводки лекальных кривых нужно иметь набор нескольких лекал. Выбрав подходящее лекало, подгоняют кромку части лекала к возможно большему количеству найденных точек. Чтобы обвести

следующий участок, нужно подогнать кромку лекала ещё к двум-трём точкам, при этом лекало должно касаться части уже обведённой кривой. Способ проведения кривой по лекалу приведён на рис. 3.

Рис. 3. Построение кривой по лекалу.

На рис. 4 показан пример построения эллипса по заданным осям

Рис. 4. Построение эллипса

На рис. 5 показан пример построения параболы с помощью деления сторон угла AOC на одинаковое количество равных частей. На рис. 6 дан пример построения эвольвенты окружности. Заданная

окружность разделена на 12 равных частей. Через точки деления проведены касательные к окружности. На касательной, проведённой через точку 12, отложена длина данной окружности и разделена на 12 равных частей. Начиная от точки l на касательных к окружности, последовательно откладывают отрезки, равные 1/12 длины окружности, 1/6, 1/4 и т. д.

Рис. 5. Построение параболы

Рис. 6. Построение эвольвенты

Рис. 7.Построение синусоиды

Рис.8 Построение спирали Архимеда

На рис. 7 показан приём построения синусоиды. Заданная окружность разделена на 12 равных частей, на такое же число равных частей делится отрезок прямой, равный длине развёрнутой



Читайте также: