Обычная молния. Молния, как чудо природы

Молния - одно из тех природных явлений, которые издавна внушали страх человеческому роду. Понять её сущность стремились величайшие умы, такие как Аристотель или Лукреций. Они считали, что это шар, состоящий из огня и зажатый в водяных парах туч, и, увеличиваясь в размере, он прорывает их и стремительной искрой падает на землю.

Понятие молнии и ее зарождение

Чаще всего молния образуется в которые имеют достаточно большой размер. Верхняя часть может располагаться на высоте 7 километров, а нижняя - всего лишь в 500 метрах над поверхностью земли. Учитывая атмосферную температуру воздуха, можно прийти к выводу, что на уровне 3-4 км вода замерзает и превращается в льдинки, которые, сталкиваясь между собой, электризуются. Те, что обладают наибольшим размером, получают отрицательный заряд, а наименьшие - положительный. Исходя из своего веса, они равномерно распределяются в облаке по слоям. Сближаясь между собой, они образуют плазменный канал, из которого и получается электрическая искра, именуемая молнией. Свою ломаную форму она получила из-за того, что на пути к земле часто встречаются различные воздушные частицы, которые образуют преграды. И чтобы их обойти, приходится менять траекторию.

Физическое описание молнии

Разряд молнии выделяет от 109 до 1010 джоулей энергии. Такое колоссальное количество электричества в большей степени расходуется на создание световой вспышки и которая иначе называется громом. Но даже маленькой части молнии хватит, чтобы творить немыслимые вещи, например, ее разряд может убить человека или разрушить здание. Еще один интересный факт говорит о том, что это природное явление способно плавить песок, образуя полые цилиндры. Такой эффект достигается из-за высокой температуры внутри молнии, она может достигать 2000 градусов. Время удара о землю также различно, оно не может быть больше секунды. Что же касается мощности, то амплитуда импульса может достичь сотни киловатт. Соединяя все эти факторы, получается наисильнейший природный разряд тока, который несет в себе гибель всему тому, к чему прикоснется. Все существующие виды молний очень опасны, и встреча с ними крайне нежелательна для человека.

Образование грома

Все виды молний невозможно представить себе без раската грома, который не несет в себе такой же опасности, но в некоторых случаях может привести к сбою работы сети и к другим техническим неполадкам. Он возникает из-за того, что теплая волна воздуха, нагретая молнией до температуры горячее, чем солнце, сталкивается с холодной. Звук, получающийся при этом, - не что иное, как волна, вызванная колебаниями воздуха. В большинстве случаев громкость увеличивается к концу раската. Это происходит из-за отражения звука от облаков.

Какие бывают молнии

Оказывается, все они разные.

1. Линейные молнии - наиболее часто встречающаяся разновидность. Электрический раскат выглядит как перевернутое вверх тормашками, разросшееся дерево. От главного канала отходит несколько более тонких и коротких "отростков". Длина такого разряда может достигать 20 километров, а сила тока - 20 000 ампер. Скорость движения составляет 150 километров в секунду. Температура плазмы, наполняющей канал молнии, доходит до 10 000 градусов.

2. Внутриоблачные молнии - происхождение данного вида сопровождается изменением электрических и магнитных полей, также излучаются радиоволны. Такой раскат с наибольшей вероятностью можно встретить ближе к экватору. В умеренных широтах он появляется крайне редко. Если в облаке находится молния, то побудить ее выбраться наружу может и посторонний объект, нарушающий целостность оболочки, например наэлектризованный самолет или металлический трос. По длине может колебаться от 1 до 150 километров.

3. Наземные молнии - данный вид проходит несколько стадий. На первой из них начинается ударная ионизация, которая создается в начале свободными электронами, они всегда присутствует в воздухе. Под действием электрического поля элементарные частицы приобретают высокие скорости и направляются к земле, сталкиваясь с молекулами, составляющими воздух. Таким образом, возникают электронные лавины, по-другому называющиеся стримеры. Они представляют собой каналы, которые, сливаясь между собой, служат причиной яркой, термоизолированной молнии. Она достигает земли в форме небольшой лестницы, потому что на ее пути встречаются преграды, и чтобы их обойти, она меняет направление. Скорость движения составляет примерно 50000 километров в секунду.

После того как молния пройдет свой путь, она заканчивает движение на несколько десятков микросекунд, при этом свет ослабевает. После этого начинается следующая стадия: повторение пройденного пути. Самый последний разряд превосходит по яркости все предыдущие, сила тока в нем может достигать сотен тысяч ампер. Температура же внутри канала колеблется в районе 25 000 градусов. Такой вид молний самый продолжительный, поэтому последствия могут быть разрушительными.

Жемчужные молнии

Отвечая на вопрос о том, какие бывают молнии, нельзя упустить из виду такое редкое природное явление. Чаще всего разряд проходит после линейного и полностью повторяет его траекторию. Только вот на вид он представляет собой шары, находящиеся на расстоянии друг от друга и напоминающие собой бусы из драгоценного материала. Такая молния сопровождается самыми громкими и раскатистыми звуками.

Шаровая молния

Природное явление, когда молния принимает форму шара. В этом случае траектория ее полета становится непредсказуемой, что делает ее еще опаснее для человека. В большинстве случаев такой электрический ком возникает совместно с другими видами, но зафиксирован факт его появления даже в солнечную погоду.

Как образуется Именно этим вопросом чаще всего задаются люди, столкнувшиеся с этим феноменом. Как всем известно, некоторые вещи являются прекрасными проводниками электричества, так вот именно в них, накапливая свой заряд, и начинает зарождаться шар. Также он может появиться из основной молнии. Очевидцы же утверждают, что она возникает просто из ниоткуда.

Диаметр молнии колеблется от нескольких сантиметров до метра. Что же касается цвета, то существует несколько вариантов: от белого и желтого до ярко-зеленого, крайне редко можно встретить черный электрический шар. После стремительного спуска он движется горизонтально, примерно в метре от поверхности земли. Такая молния может неожиданно менять траекторию и так же неожиданно исчезнуть, высвободив при этом огромную энергию, из-за которой происходит плавление или же вовсе разрушение различных предметов. Живет она от десяти секунд до нескольких часов.

Спрайт-молния

Совсем недавно, в 1989 году, ученые обнаружили еще один вид молнии, который получил название спрайт . Открытие произошло совершенно случайно, потому что феномен наблюдается крайне редко и длится лишь десятые доли секунды. От других их отличает высота, на которой они появляются - примерно 50-130 километров, в то время как другие подвиды не преодолевают 15-километровый рубеж. Также спрайт-молния отличается огромным диаметром, который достигает 100 км. Они выглядят как вертикальные и вспыхивают группами. Их цвет различается в зависимости от состава воздуха: ближе к земле, где больше кислорода, они зеленые, желтые или белые, а вот под влиянием азота, на высоте более 70 км, они приобретают ярко-красный оттенок.

Поведение во время грозы

Все виды молний несут в себе необычайную опасность для здоровья и даже жизни человека. Чтобы избежать электрического удара, на открытой местности следует придерживаться следующих правил:

  1. В данной ситуации в группу риска попадают самые высокие объекты, поэтому стоит избегать открытых местностей. Чтобы стать ниже, лучше всего присесть и положить голову и грудь на колени, в случае поражения эта поза защитит все жизненно важные органы. Ни в коем случае нельзя ложиться плашмя, чтобы не увеличивать площадь возможного попадания.
  2. Также не стоит прятаться под высокими деревьями и Нежелательным укрытием будут и незащищенные конструкции или металлические объекты (например, навес для пикника).
  3. Во время грозы нужно немедленно выйти из воды, потому что она является хорошим проводником. Попадая в нее, разряд молнии может с легкостью распространиться и на человека.
  4. Ни в коем случае нельзя пользоваться мобильным телефоном.
  5. Для оказания первой помощи пострадавшему лучше всего произвести сердечно-легочную реанимацию и немедленно вызвать службу спасения.

Правила поведения в доме

Внутри помещений тоже существует опасность поражения.

  1. Если на улице началась гроза, первым делом нужно закрыть все окна и двери.
  2. Необходимо отключить все электрические приборы.
  3. Не приближаться к проводным телефонам и прочим кабелям, они являются прекрасными проводниками электричества. Таким же эффектом обладают и металлические трубы, поэтому не стоит находиться рядом с сантехникой.
  4. Зная, как образуется шаровая молния и как непредсказуема ее траектория, если она все-таки попала в помещение, необходимо немедленно его покинуть и закрыть все окна и двери. Если же эти действия невозможны, лучше стоять неподвижно.

Природа все еще неподвластна человеку и несет многие опасности. Все виды молний - это, по своей сути, мощнейшие электрические разряды, которые в несколько раз превышают по мощности все искусственно созданные человеком источники тока.

Древние люди далеко не всегда считали грозу и молнию, а также сопровождающий их раскат грома проявлением гнева богов. Например, для эллинов гром и молния являлись символами верховной власти, тогда как этруски считали их знамениями: если вспышка молнии была замечена с восточной стороны, это означало, что всё будет хорошо, а если сверкала на западе или северо-западе – наоборот.

Идею этрусков переняли римляне, которые были убеждены, что удар молнии с правой стороны является достаточным основанием, чтобы отложить все планы на сутки. Интересная трактовка небесных искр была у японцев. Две ваджры (молнии) считались символами Айдзен-мео, бога сострадания: одна искра находилась на голове божества, другую он держал в руках, подавляя нею все негативные желания человечества.

Молния – это огромных размеров электрический разряд, который всегда сопровождается вспышкой и громовыми раскатами (в атмосфере чётко просматривается сияющий канал разряда, напоминающий дерево). При этом вспышка молнии почти никогда не бывает одна, за ней обычно следует две, три, нередко доходит и до нескольких десятков искр.

Эти разряды почти всегда образуются в кучево-дождевых облаках, иногда – в слоисто-дождевых тучах больших размеров: верхняя граница нередко достигает семи километров над поверхностью планеты, тогда как нижняя часть может почти касаться земли, пребывая не выше пятисот метров. Молнии могут образовываться как в одной туче, так и между находящимися рядом наэлектризованными облаками, а также между облаком и землей.

Состоит грозовая туча из большого количества пара, сконденсированного в виде льдинок (на высоте, превышающей три километра это практически всегда ледяные кристаллы, поскольку температурные показатели здесь не поднимаются выше нуля). Перед тем как туча становится грозовой, внутри неё начинают активное движение ледяные кристаллы, при этом двигаться им помогают восходящие с нагретой поверхности потоки тёплого воздуха.

Воздушные массы увлекают за собой вверх более мелкие льдинки, которые во время движения постоянно наталкиваются на более крупные кристаллы. В результате кристаллики меньших размеров оказываются заряженными положительно, более крупные – отрицательно.

После того как маленькие ледяные кристаллики собираются наверху, а большие – снизу, верхняя часть облака оказывается положительно заряженной, нижняя – отрицательно. Таким образом, напряжённость электрического поля в туче достигает чрезвычайно высоких показателей: миллион вольт на один метр.

Когда эти противоположно заряженные области сталкиваются друг с другом, в местах соприкосновения ионы и электроны образовывают канал, по которому вниз устремляются все заряженные элементы и образуется электрический разряд – молния. В это время выделяется настолько мощная энергия, что её силы вполне хватило бы на то, чтобы на протяжении 90 дней питать лампочку мощностью в 100 Вт.


Канал раскаляется почти до 30 тыс. градусов Цельсия, что в пять раз превышает температурные показатели Солнца, образуя яркий свет (вспышка обычно длится лишь три четверти секунды). После образования канала грозовое облако начинает разряжаться: за первым разрядом следуют две, три, четыре и больше искр.

Удар молнии напоминает взрыв и вызывает образование ударной волны, чрезвычайно опасной для любого живого существа, оказавшегося возле канала. Ударная волна сильнейшего электрического разряда в нескольких метрах от себя вполне способна сломать деревья, травмировать или контузить даже без прямого поражения электричеством:

  • На расстоянии до 0,5 м до канала молния способна разрушить слабые конструкции и травмировать человека;
  • На расстоянии до 5 метров постройки остаются целыми, но может выбить окна и оглушить человека;
  • На больших расстояниях ударная волна негативных последствий не несёт и переходит в звуковую волну, известную как громовые раскаты.


Раскаты грома

Через несколько секунд после того как был зафиксирован удар молнии, из-за резкого повышения давления вдоль канала, атмосфера раскаляется до 30 тыс. градусов Цельсия. В результате этого возникают взрывообразные колебания воздуха и возникает гром. Гром и молния тесно взаимосвязаны друг с другом: длина разряда нередко составляет около восьми километров, поэтому звук с разных его участков доходит в разное время, образуя громовые раскаты.

Интересно, что измеряя время, которое прошло между громом и молнией, можно узнать, насколько далеко находится эпицентр грозы от наблюдателя.

Для этого нужно умножить время между молнией и громом на скорость звука, который составляет от 300 до 360 м/с (например, если промежуток времени составляет две секунды, эпицентр грозы находится немногим более чем в 600 метрах от наблюдателя, а если три – на расстоянии километра). Это поможет определить, удаляется или приближается гроза.

Удивительный огненный шар

Одним из наименее изученных, а потому наиболее таинственных явлений природы считается шаровая молния – передвигающийся по воздуху святящийся плазменный шар. Загадочен он потому, что принцип формирования шаровой молнии неизвестен и поныне: несмотря на то, что существует большое число гипотез, объясняющих причины появления этого удивительного явления природы, на каждую из них нашлись возражения. Учёным так и не удалось опытным путём добиться образования шаровой молнии.

Шарообразная молния способна существовать длительное время и перемещаться по непрогнозируемой траектории. Например, она вполне способна зависать несколько секунд в воздухе, после чего метнуться в сторону.

В отличие от простого разряда, плазменный шар всегда бывает один: пока не было одновременно зафиксировано двух и больше огненных молний. Размеры шаровой молнии колеблются от 10 до 20 см. Для шаровой молнии характерны белый, оранжевый или голубой тона, хотя нередко встречаются и другие цвета, вплоть до чёрного.


Ученые еще не определили температурные показатели шаровой молнии: несмотря на то, что она по их подсчётам должна колебаться от ста до тысячи градусов Цельсия, люди, находившиеся недалеко от этого феномена, не ощущали исходившей от шаровой молнии теплоты.

Основная трудность при изучении этого феномена состоит в том, что зафиксировать его появление учёным удаётся редко, а показания очевидцев часто ставят под сомнение тот факт, что наблюдаемое ими явление действительно являлось шаровой молнией. Прежде всего, расходятся показания относительно того, в каких условиях она появилась: в основном её видели во время грозы.

Существуют также показания, что шаровая молния может появляться и в погожий день: спуститься с облаков, возникнуть в воздухе или появиться из-за какого-нибудь предмета (дерева или столба).

Ещё одной характерной особенностью шаровой молнии является её проникновение в закрытые комнаты, была замечена даже в кабинах пилотов (огненный шар может проникать через окна, спускаться по вентиляционным каналам и даже вылетать из розеток или телевизора). Также были неоднократно задокументированы ситуации, когда плазменный шар закреплялся на одном месте и постоянно там появлялся.

Нередко появление шаровой молнии не вызывает неприятностей (она спокойно движется в воздушных потоках и через какое-то время улетает или исчезает). Но, были замечены и печальные последствия, когда она взрывалась, моментально испаряя находящуюся неподалёку жидкость, плавя стекло и металл.


Возможные опасности

Поскольку появление шаровой молнии всегда неожиданно, увидев возле себя этот уникальный феномен, главное, не впадать в панику, резко не двигаться и никуда не бежать: огненная молния очень восприимчива к колебаниям воздуха. Необходимо тихо уйти с траектории движения шара и постараться держаться от неё как можно дальше. Если человек находится в помещении, нужно потихоньку дойти до оконного проёма и открыть форточку: известно немало историй, когда опасный шар покидал квартиру.

В плазменный шар ничего нельзя бросать: он вполне способен взорваться, а это чревато не только ожогами или потерей сознания, но остановкой сердца. Если же случилось так, что электрический шар зацепил человека, нужно перенести его в проветриваемую комнату, теплее укутать, сделать массаж сердца, искусственное дыхание и сразу же вызвать врача.

Что делать в грозу

Когда начинается гроза и вы видите приближение молнии, нужно найти укрытие и спрятаться от непогоды: удар молнии нередко смертелен, а если люди и выживают, то часто остаются инвалидами.

Если же никаких построек поблизости нет, а человек в это время в поле, он должен учитывать, что от грозы лучше спрятаться в пещере. А вот высоких деревьев желательно избегать: молния обычно метит в самое большое растение, а если деревья имеют одинаковую высоту, то попадает в то, что лучше проводит электричество.

Чтобы защитить отдельно стоящее строение или конструкцию от молнии, возле них обычно устанавливают высокую мачту, наверху которой закреплён заострённый металлический стержень, надёжно соединённый с толстым проводом, на другом конце находится закопанный глубоко в землю металлический предмет. Схема работы проста: стержень от грозовой тучи всегда заряжается противоположным облаку зарядом, который, стекая по проводу под землю, нейтрализует заряд тучи. Это устройство называется громоотвод и устанавливается на всех зданиях городов и других людских поселений.

Многих будоражат, в том числе и меня, снимки такого природного явления, как молнии. Необузданная сила природы, которая на одних действует устрашающе, а кого-то восхищает. У каждого реакция своя. Но независимо от этого мало кому не нравится смотреть на завораживающие фотографии с молниями, я еще таких людей не встречал. Даже те люди, которые страшно боятся молний и грома, с большим удовольствием и восхищением смотрят на фотографии той стихии, которая вводит их в ужас. Фотография безопаснее, но «правильная» фотография так же может вызвать эмоции восхищения, страха и удивления. Наверное, сложно найти фотографа, который не хотел сфотографировать молнии и я постараюсь помочь новичкам понять некоторые нюансы в такой съемке. Более продвинутые фотографы наверняка догадываются и сами, что нужно сделать. Поэтому данная заметка больше ориентирована на тех, кто недавно стал обладателем фотоаппарата. Меня спрашивают о технологии съемки молний, опишу СВОЙ метод. Я абсолютно не претендую на то, что моя заметка самая правильная и если вы не будете следовать моим советам - у вас ничего не получится. Я повторюсь: все, что тут описано - это следствие моих проб и ошибок. Так же это касается моих снимков, я не претендую на лавры первенства. Кому-то они нравятся, кому-то нет… Начнем, важные моменты. Первое, что вы должны иметь - это устойчивый штатив, чем он устойчивей - тем лучше! Не забывайте, что при грозе довольно часто сильный ветер! Чтобы устранить «шевеленку» нам и нужен крепкий и устойчивый штатив. Если у вас штатив из бюджетных моделей - не отчаивайтесь, с ним тоже можно работать. По возможности не раскладывайте его на всю длину ног, это позволит вам убрать лишние прогибы в ногах штатива, а так же повысит жесткость. Не трогайте штатив во время съемки, это так же может привести к шевеленке или еще хуже - сбить ориентацию фотоаппарата. Т.к. снимать нужно в одной позиции - это приведет к осложнениям при сложении снимков. Для дополнительной устойчивости можно повешать на штатив дополнительный груз. Второй важный момент - это пульт. Без пульта сложно нажать кнопку спуска и при этом не получить смазанный кадр. Пульты есть нескольких типов. Программируемые и не программируемые. Программируемые пульты: особенность их в том, что они позволяют выставить определенную выдержку, количество кадров и интервал между следующим кадром. Это очень облегчает работу фотографа. Выставил выдержку 2 минуты (как пример), количество кадров и интервал, чтобы был чуть больше того времени, пока сохраняется фотография на флешку, нажал кнопку и сиди, любуйся молниями. Пульт не программируемый - этот пульт позволяет просто нажать кнопку или зафиксировать ее. Отсчет выдержки нужно вести самому. С этим пультом не будет тряски фотоаппарата, а все остальное, увы, придется делать самому. Третий и самый важный момент. Фотоаппарат. Молнии я снимаю на зеркалку, т.к. мыльницы у меня нет, да и я знаю, что такое попытаться на мыльницу поймать хороший кадр. Для этого нужно 99% везения. С зеркалкой или любым фотоаппаратом, у которого есть полностью ручной режим - это не составляет особого труда. Я использую длинные выдержки - это самый верный способ поймать молнии. На обычной мыльнице кадр с длительной выдержкой не получится, да и шумят мыльницы намного сильнее. По поводу объектива - чем больше у него угол - тем лучше. По умолчанию в зеркалках начального уровня объектив с фокусным 18-55 мм. Иногда вполне достаточно и 18 мм. В моем арсенале: . Canon 1000D . объектив 18-55 (обязательно с защитным фильтром и блендой) . штатив (чем жестче, тем лучше) . ноутбук c установленным ПО. кабель ЮСБ от фотоаппарата. пульт для длительных выдержек. блок питания (БП) для фотоаппарата. запасные аккумуляторы Я специально выбрал самый бюджетный фотоаппарат, чтобы владельцы таковых знали и не тушевались перед дорогущими профи камерами и объективами. На бюджетную технику так же получаются прекрасные снимки. От места съемки зависит то, как я использую свое оборудование. Иногда я снимаю с балкона\крыши, иногда в поле, где нет электричества. Если фотографирую с балкона, то вместо аккумулятора я использую блок питания (БП), чтобы не переживать о том, что в самый нужный момент разрядится аккумулятор. Фотоаппарат я подключаю через кабель ЮСБ к ноутбуку, где у меня установлена программа EOS Utility. С помощью нее я могу управлять фотоаппаратом полностью: выдержка, диафрагма, ИСО и конечно сохранение кадров на компьютер (не нужно думать о том, есть ли место на карточке). Эта программа шикарна тем, что можно выставить серию снимков с любой выдержкой! Пока оно щелкает шедевры - можно пойти попить кофе, или фильм посмотреть. Думаю, аналогичные программы есть и у других производителей. Вариант второй, где нет розеток. Тут БП уже не подойдет. Поэтому я запасся 2 аккумуляторами, на случай, если один разрядится. Оборудование в таком случае: штатив, фотик, и пульт управления. Теперь о настройках фотоаппарата: - Для начала перевожу фотоаппарат на полностью ручной режим. На Canon-ах это режим "M" - Выдержку ставлю на BULB (по-старому это "Вольно"). Для тех, у кого нет пульта макс. значение это 30 сек. (Для Canon, у других производителей может отличаться) - Чувствительность или ISO ставлю минимальное, у меня это значение = 100. Чем меньше эта цифра - тем меньше шумы, но и меньше света фиксирует сенсор, но т.к. у нас длительные выдержки - количество света нас не беспокоит, главное меньше шумов. - На объективе обязательно отключаю автофокус и стабилизатор изображения (если есть). Они нам не нужны. Фокусируюсь ручками на бесконечность и больше не трогаю фокусировочное кольцо. Если автофокус не отключить - то при следующем снимке он попытается сфокусироваться. Как вы догадываетесь в темноте, да и еще по небу сфокусироваться он не сможет - а значит, снимок не получиться сделать вообще. Стабилизатор в этом случае бесполезен, т.к. я использую штатив. Лишнее потребление драгоценной энергии аккумулятора нам не нужно (это для тех, кто снимает с аккумулятора). - Диафрагма. Я поджимаю до значения 11 (это для 2-х минутных выдержек и больше). Но больше 11 я не рекомендую ставить. Кто не знает - чем больше цифра - тем резче кадр и больший ГРИП, но темнее кадр. Значит, выдержку нужно подбирать, чтобы не было совсем темных фото. - RAW. Я всегда снимаю в РАВе. Это дает больше возможностей при обработке фото. Но не забывайте в РАВе размер фото в 2 или 3 раза больше. Значит, карточка должна быть большого объема. Все. Фотоаппарат настроен, установлен на штатив, и готов к работе. Осталось выбрать хороший ракурс и начать съемку шедевров. Обработка. В ФШ складываю несколько кадров в один, меняя тип наложения слоя. Суммированный кадр немного кадрирую, тягаю уровнями, чтобы вытянуть темные участки и убрать пересветы, добавляю немного шарпа (совсем чуть-чуть!!) и если нужно прохожусь шумодавом. Если на каком-то кадре получилась подвижка, но сами молнии вышли четкими и без смазов - можно пройтись маской. Не хочу вдаваться в детали обработки, т.к. вариантов обработки множество и найти в интернете не составит труда. Все.

Помните мы тут рассматривали ! А теперь поговорим об обычных молниях. Вот скажите мне, как их снимают фотографы? Понятно, что успеть щелкнуть во время разряда нельзя. Да и даже серию снимков начинать делать заранее тоже не много шансов. Не уж то врубают почти как видеозапись, а потом тупо вырезают кадр молнии?

Давайте посмотрим на красивые молнии. Почти все картинки кликабельны до 1920рх - выбирайте себе на стол!

Молния — электрический искровой разряд, проявляющийся, обычно, яркой вспышкой света и сопровождающим её громом. Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Молнии также были найдены на Венере, Юпитере, Сатурне и Уране.


Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

В июле 2005 года агентство РИА «Новости» передало следующее сообщение:
«В Японии девять человек пострадали от удара молнии, сообщило Главное полицейское управление страны, это произошло на пляже в префектуре Эба, в 50 километрах к северу от Токио.
По свидетельству очевидцев, при ясной погоде прозвучал раскат грома, в воду ударила молния, поразившая нескольких купающихся. Все они доставлены в больницу. Двое до сих пор находятся в бессознательном состоянии, а семеро получили ожоги разной степени тяжести...

Разряды молний могут происходить между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Разряду предшествует возникновение значительной разности электрических потенциалов между соседними облаками или между облаком и землей вследствие разделения и накопления атмосферного электричества в результате таких природных процессов, как дождь, снегопад и т.д. Возникшая таким образом разность потенциалов может достигать миллиарда вольт, а последующий разряд накопленной электрической энергии через атмосферу может создавать кратковременные токи от 3 до 200 кА.

Для объяснения электризации грозовых облаков был разработан ряд теорий. В 1929 Дж.Симпсон предложил теорию, которая объясняет электризацию дроблением дождевых капель потоками воздуха. В результате дробления падающие более крупные капли заряжаются положительно, а остающиеся в верхней части облака более мелкие - отрицательно. В основе индукционной теории, предложенной в 1885, лежит предположение о том, что электрические заряды разделяются электрическим полем Земли, имеющей отрицательный заряд. В теории свободной ионизации Ч.Вильсона предполагается, что электризация возникает как результат избирательного накопления ионов находящимися в атмосфере капельками разных размеров. Возможно, что электризация грозовых облаков осуществляется совместным действием всех этих механизмов, а основным из них является падение достаточно крупных частиц, электризуемых трением об атмосферный воздух.

На открытой местности разряды положительной и отрицательной полярности наблюдаются одинаково часто, но около 95% ударов в линии электропередачи и антенны исходят из отрицательно заряженных облаков. Разряд молнии характеризуется чрезвычайно быстрым нарастанием тока до пикового значения, как правило, достигаемого за время от 1 до 80 мкс (миллионных долей секунды), и последующим падением тока обычно за 3-200 мкс после пикового значения.

Многократные молнии - обычное явление, они могут насчитывать до 40 разрядов с интервалами от 500 мкс до 0,5 с, а полная продолжительность многократного разряда может достигать 1 с. С помощью фоторегистратора с временной разверткой было детально изучено развитие разряда молнии от облака до земли. Разряд развивается лавинообразно, сначала в виде ионизованного канала, получившего название лидера молнии, который ступенчато продвигается от облака к земле. Скорость ступенчатого движения лидера к земле равна приблизительно 45·10 6 м/с, причем интервал между ступенями составляет около 100 мкс. Длина каждой ступени лидера - около 45 м, так что полное время движения до земли может достигать 0,02 с. Затем по этому ионизованному каналу от земли к облаку движется основной разряд со скоростью от 2·10 7 м/с до 15·10 7 м/с. Он обычно глубоко проникает внутрь облака, образуя множество разветвленных каналов. Свечение этого яркого разряда, обусловленное рекомбинацией ионизованных атомов, может продолжаться более секунды.

Канал молнии определяется электрическим полем на конце движущегося лидера и локальной ионизацией. Вблизи земли его движение определяется земными стримерами или коронным разрядом, возникающим над заостренными проводящими предметами, выступающими над поверхностью земли. Молния с большой вероятностью повторно ударяет в ту же самую точку, если только объект не разрушен предыдущим ударом. Диаметр ядра светящегося разряда - от 1 до 2 см, а наэлектризованная зона вокруг ядра составляет, по-видимому, несколько метров в диаметре. Разветвленность разряда молнии между облаками обусловлена ступенчатым характером движения лидера, направление каждого шага которого определяется локальными условиями ионизации и потому носит в значительной мере случайный характер.

Американский физик Алистер Лесли внес существенные коррективы в выводы японских специалистов: «Климатические условии не всегда определяют поведение этого грандиозного явления. В данном случае длина небесной искры равнялась 140 километрам. Сила тока достигала 600 килоампер. Температура 30 000 градусов по Кельвину. Интенсивность излучения перекрыла естественный солнечный свет при ничтожно малом канале разрядного шнура 2,5-3 сантиметра.
Купающиеся, таким образом, оказались погруженными в электролит гигантского конденсатора,

пластины которого - крайне разряженные облака и обширная береговая линия. Генезис этого явления, приведшего к трагедии, тщательно изучается. Вместе с тем преждевременно рапортовать о том, что у нас есть стройная, объясняющая все теория.»

Ученый прав. Современная наука, к сожалению, смоглаа преуспеть разве что в измерениях электрических составляющих грозовых фронтов, подсчетах ущерба планетарного масштаба, ежегодно наносимого ими.

Очень мало известно о физике молнии. Господствуют выводы, сделанные еще Михаилом Ломоносовым: злектрическая искра проскакивает либо между разнозаряженными знаками облаков, либо их отрицательной зоной и землей. 3

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуются в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами.

ак, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с мириадов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км 3 .
Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — наземные молнии.

Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.
Процесс развития наземной молнии состоит из несколько стадий.

На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

Таким образом возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров.
Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности Земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду.

Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии може быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают.

В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера.

Когда стреловидный лидер доходит до поверхности Земли, следует второй главный удар, подобный первому.

Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек.

Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.
При попадании молнии непосредственно в грунт возможно образование своеобразного минерала фульгурита, представляющего собой, в основном, спёкшийся кварцевый песок.

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе.

Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

Лучше всего работу естественной электрической машины наблюдать из космоса. Российский космонавт Владимир Джанибеков говорит:

Вспышки молний, прошивающие пространство над планетой, похожи на работу фотовспышек невероятной силы, отлично видных даже с Луны. Начинаешь понимать, почему люди, оказавшиеся под обстрелом молний, сравнивали свое положение с кошмаром... 3

Ежечасно на нашей планете регистрируются более миллиона грозовых разрядов, жертвами некоторых становятся люди, находящиеся на воде, в небе, на земле.
По мнению американского физика Джерри Айтмана, эти потери от поражений небесным электричеством вполне сопоставимы с потерями в локальных боевых действиях. То есть, годичная статистика смертей и увечий иногда существенно превышает невосполнимый ущерб, наносимый такими природными катастрофами, как смерчи, цунами, сели.
В довершение ко всему, оказывается, молния еще и художник!

Разновидностью молний есть шаровая молния - светящийся сгусток горячего газа, изредка появляющийся в грозовых погодных условиях.

В 1943 г. некий В. Дж. Хэмфрис в своей работе «Причуды погоды» высказывал традиционную точку зрения, что шаровая молния — это не более чем оптическая иллюзия.

Несмотря на то, что это явление пока ещё до конца не понято физикой, не стоит относиться к нему как к чему-то крайне необычному, тем более как к сверхъестественному. Это явление до конца не изучено, но активно изучается.
На сегодняшний день ясно, что шаровая молния — просто красочное атмосферное явление, проявление атмосферного электричества, и для его объяснения не потребуется привлечение каких-либо кардинально новых физических концепций.
Основной камень преткновения в этих исследованиях — отсутствие надёжной методики воспроизводимого получения шаровой молнии в управляемых, лабораторных условиях. Если бы это было достигнуто, задача была бы практически решена.

Поныне в экспериментах удавалось получить нечто, лишь отдалённо схожее с шаровой молнией. И, изучая это «нечто», экспериментаторы пока не могут сказать, изучают ли они саму шаровую молнию или какое-то другое явление. Такое состояние дел в эксперименте и позволяет теоретикам выдвигать совершенно разные (а иногда и самые фантастические) предположения и гипотезы о сущности шаровой молнии.

«К шаровой молнии прикасаться очень опасно. Любопытный малыш как-то ударил шаровую молнию ногой, и происшедший взрыв принес гибель одиннадцати животным, пасущимся неподалеку, а ребенка и его спутника швырнул на землю» 4
Там же Лейн приводит следующий случай с шаровой молнией: «Молодая девушка сидела за столом и вдруг заметила большой огненный шар, который медленно двигался по полу комнаты в ее направлении.
Когда шар приблизился к ней, он поднялся и начал двигаться по спирали вокруг нее.

Затем устремился к печи и поднялся по трубе вверх. Оказавшись вне трубы, он взорвался над крышей с таким грохотом, что потряс до основания весь дом». 4

Цвет: самым распространенным является желтый, оранжевый (до красного), далее белый, голубой, попадаются и зеленые, кто-то видел даже черные и прозрачные (в воздухе видна летающая линза).
Одним словом, с уверенностью сказать, что если вы увидели что-то фиолетового цвета в желтую полоску, и это не была шаровая молния, будет опрометчиво. Кстати, серьезно, в очень многих статьях отмечается, что шаровая молния бывает неоднородного цвета, пятнистой, и может даже менять цвет.

Размер: тут самым распространенным является диаметр от 10 до 20 сантиметров. Реже встречаются экземпляры от 3 до 10 и от 20 до 35. Существование шаровой молнии диаметром около метра так же не большая редкость, а еще бывают и несколько километровые гиганты. Остается только утешаться тем, что шар диаметром близким к километру вряд ли залетит вам в форточку.

Температура: о! ну тут уже дела совсем плохи. Называется температура от комнатной до звездной. Чаще всего встречается упоминание о 100-1000 градусов. Но при этом об ощутимом тепле на расстоянии вытянутой руки нигде не написано.

Как такое может быть, судить уже физикам, а мы лишь с покорностью ищем упоминаний об отрицательной температуре шаровой молнии.

Во время взрыва, если таковым заканчивается ее жизнь, шаровая молния выделяет большое количество тепла, от которого может случиться пожар или иные повреждения. Поэтому после взрыва стоит обратить внимание на возможное возгорание.

Вес: везде написано чуть ли не одинаковым шрифтом: 5-7 грамм. И это не зависит от размеров.

Интенсивность свечения: по самому распространенному мнению, увидев шаровую молнию, вы на несколько секунд совершенно бесплатно получите 100 ватную лампочку. Хотя она может совсем скоро начать портится и совсем угаснуть в конце. О свечении шаровой молнии во время взрыва ничего не известно, скорее всего это сильная вспышка.

Звездочки, молнии, внезапно вспыхивающие перед глазами, похожие на те, что появляются после сильного ушиба головы, возникающие периодически, говорят о нарушениях в сетчатке глаза и требуют врачебной консультации .

Почему возникают вспышки света в глазах

Фото 1: Есть несколько заболеваний, одним из характерных симптомов которых служит фотопсия - молнии в глазах. Источник: flickr (sharyn morrow).

Отслойка стекловидного тела сзади

Строго говоря, это не заболевание, а возрастное изменение глаза . Однако, в процессе отслоения стекловидное тело влечет за собой сетчатку, что и обеспечивает эффект вспышек в виде молний в глазах. При этом лечения не требуется, но пациент должен находиться на постоянном контроле у офтальмолога , чтобы избежать тяжелой патологии - отслойки сетчатки, что приводит к утрате зрения.

Разрыв и отслоение сетчатки

Начинается в процессе чрезмерной физической нагрузки или нервного перенапряжения. Всполохи молний могут сопровождаться резким ухудшением зрения или ощущением вуали перед глазами . Если немедленно убрать провоцирующий фактор и обратиться к врачу, можно остановить процесс отслойки сетчатки и сохранить зрение.

Глазная мигрень

Иногда перед приступом головной боли или во время него перед глазами вспыхивают звездочки и молнии , обычно на периферии одного или обоих глаз. Но бывает и так, что эти симптомы наблюдаются вовсе без головной боли. Это и есть глазная мигрень.

Нарушения кровообращения, болезни сосудов

При многих системных и сосудистых патологиях пациенты отмечают мелькание мушек и вспышки молний в глазах . Это говорит о том, что в тканях сетчатки нарушено кровообращение, из-за чего происходят периодические спазмы сосудов.

Опухоли мозга

Один из симптомов заболевания - постоянные вспышки света в глазах : сильные и слабые, в виде разнообразных фигур и молний, цветные и белые.

Воспаление сетчатки и глазных сосудов

Из-за проникновения инфекции развиваются воспалительные заболевания сетчатки и сосудов: хориоидит и ретинит. Нарушается цветовосприятие, снижается зрение, перед глазами постоянно мелькают “мушки” , вспышки самых разных форм.

Важно! Кроме того, молнии и звездочки в глазах появляются после травмы головы или глаза.

Что делать, когда в глазах вспышки света

Какова бы ни была причина, внезапные вспышки молний и звездочек в обоих или одном глазу требуют консультации офтальмолога . Если симптом возникает однократно и редко, можно попробовать народные средства:

  • провести легкий массаж области вокруг глаз. Это усиливает кровоток и способствует улучшению обменных процессов;
  • применить капли на основе сока алоэ и меда, прополиса.
Важно! Необходимо понимать, что устранение симптома не излечивает заболевание и вышеуказанные меры - лишь вспомогательные, но не основные.

Гомеопатические препараты от молний в глазах


Фото 2: С помощью гомеопатии нельзя изменить структуру глаз, но можно улучшить их питание, снять спазмы, релаксировать глазные мышцы, устранить воспаление. Все это помогает избавиться от мушек, вспышек молний в глазах и других неприятных и болезненных ощущений. Источник: flickr (Ireck Andreas Litzbarski).

Для того, чтобы получить оптимальные результаты от лечения, необходимо проконсультироваться с практикующим гомеопатом .

Снять симптомы помогут гомеопатические препараты:

Препараты Назначение

При ретинитах, головных болях с локализацией над левым глазом, “мушках”, тенях и вспышках “молний” перед глазами. Постоянное ощущение темной вуали, которая мешает рассматриванию предметов.

Вспышки в глазах при мигренях, головных болях, сопровождающихся тошнотой. Ослабление зрения. Двоение, пятна, туман в глазах. Экзофтальм.


Читайте также: