Нефть нефтепереработка. Химия и методы переработки нефти

Введение

I. Первичная переработка нефти

1. Вторичная перегонка бензиновой и дизельной фракции

1.1 Вторичная перегонка бензиновой фракции

1.2 Вторичная перегонка дизельной фракции

II. Термические процессы технологии переработки нефти

2. Теоретические основы управления процессами замедленного коксования и коксования в слое теплоносителя

2.1 Процессы замедленного коксования

2.2 Коксование в слое теплоносителя

III. Термокаталитические и термогидрокаталитические процессы технологии

переработки нефти

3. Гидроочистка керосиновых фракций

IV. Технологии переработки газов

4. Переработка нефтезаводских газов – абсорбционно-газофракционирующие установки (АГФУ) и газофракционирующие (ГФУ) установки

4.1 Газофракционирующие установки (ГФУ)

4.2 Абсорбционно-газофракционирующие установки (АГФУ)

Заключение

Список используемой литературы


Введение

Нефтяная промышленность сегодня - это крупный народнохозяйственный комплекс, который живет и развивается по своим закономерностям. Что значит нефть сегодня для народного хозяйства страны? Это: сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

В настоящее время нефтяная промышленность Российской Федерации занимает 3 место в мире. Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн. т/год нефти, а также большое количество других производственных объектов.

На предприятиях нефтяной промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания - около 20 тыс. человек.

Промышленная органическая химии прошла длинный и сложный путь развития, в ходе которого ее сырьевая база изменилась кардинальным образом. Начав с переработки растительного и животного сырья, она затем трансформировалась в угле- или коксохимию (утилизирующую отходы коксования угля), чтобы в конечном итоге превратиться в современную нефтехимию, которая уже давно не довольствуется только отходами нефтепереработки. Для успешного и независимого функционирования ее основной отрасли - тяжелого, то есть крупномасштабного, органического синтеза был разработан процесс пиролиза, вокруг которого и базируются современные олефиновые нефтехимические комплексы. В основном они получают, а затем и перерабатывают низшие олефины и диолефины. Сырьевая база пиролиза может меняться от попутных газов до нафты, газойля и даже сырой нефти. Предназначавшийся вначале лишь для производства этилена, этот процесс теперь является также крупнотоннажным поставщиком пропилена, бутадиена, бензола и других продуктов.

Нефть - наше национальное богатство, источник могущества страны, фундамент ее экономики.

технология переработка нефть газ


I . Первичная переработка нефти

1. Вторичная перегонка бензиновой и дизельной фракции

Вторичная перегонка - разделение фракций, полученных при первичной перегонке, на более узкие погоны, каждый из которых затем используется по собственному назначению.

На НПЗ вторичной перегонке подвергаются широкая бензиновая фракция, дизельная фракция (при получении сырья установки адсорбционного извлечения парафинов), масляные фракции и т.п. Процесс проводится на отдельных установках или блоках, входящих в состав установок АТ и АВТ.

Перегонка нефти – процесс разделения ее на фракции по температурам кипения (отсюда термин «фракционирование») – лежит в основе переработки нефти и получения при этом моторного топлива, смазочных масел и различных других ценных химических продуктов. Первичная перегонка нефти является первой стадией изучения ее химического состава.

Основные фракции, выделяемые при первичной перегонке нефти:

1. Бензиновая фракция – нефтяной погон с температурой кипения от н.к. (начала кипения, индивидуального для каждой нефти) до 150-205 0 С (в зависимости от технологической цели получения авто-, авиа-, или другого специального бензина).

Эта фракция представляет собой смесь алканов, нафтенов и ароматических углеводородов. Во всех этих углеводородах содержится от 5 до 10 атомов С.

2. Керосиновая фракция – нефтяной погон с температурой кипения от 150-180 0 С до 270-280 0 С. В этой фракции содержатся углеводороды С10-С15.

Используется в качестве моторного топлива (тракторный керосин, компонент дизельного топлива), для бытовых нужд (осветительный керосин) и др.

3. Газойлевая фракция – температура кипения от 270-280 0 С до 320-350 0 С. В этой фракции содержатся углеводороды С14-С20. Используется в качестве дизельного топлива.

4. Мазут – остаток после отгона выше перечисленных фракций с температурой кипения выше 320-350 0 С.

Мазут может использоваться как котельное топливо, или подвергаться дальнейшей переработке – либо перегонке при пониженном давлении (в вакууме) с отбором масляных фракций или широкой фракции вакуумного газойля (в свою очередь, служащего сырьем для каталитического крекинга сцелью получения высокооктанового компонента бензина), либо крекингу.

5. Гудрон - почти твердый остаток после отгона от мазута масляных фракций. Из него получают так называемые остаточные масла и битум, из которого путем окисления получают асфальт, используемый при строительстве дорог и т.п. Из гудрона и других остатков вторичного происхождения может быть получен путем коксования кокс, применяемый в металлургической промышленности.

1 .1 Вторичная перегонка бензиновой фракции

Вторичная перегонка бензинового дистиллята представляет собой либо самостоятельный процесс, либо является частью комбинированной установки входящей в состав нефтеперерабатывающего завода. На современных заводах установки вторичной перегонки бензинового дистиллята предназначены для получения из него узких фракций. Эти фракции используют в дальнейшем как сырье каталитического риформинга - процесса, в результате которого получают индивидуальные ароматические углеводороды - бензол, толуол, ксилолы, либо бензин с более высоким октановым числом. При производстве ароматических углеводородов исходный бензиновый дистиллят разделяют на фракции с температурами выкипания: 62-85°С (бензольную), 85-115 (120) °С (толуольную) и 115 (120)-140 °С (ксилольную).

Бензиновая фракцияиспользуется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу, чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций, путем каталитического крекинга либо риформинга.

Качество бензина как моторного топлива определяется его октановым числом. Оно указывает процентное объемное содержание 2,2,4-триметилпентана (изооктана) в смеси 2,2,4-триметилпентана и гептана (алкан с неразветвленной цепью), которая обладает такими же детонационными характеристиками горения, как и испытуемый бензин.

Плохое моторное топливо имеет нулевое октановое число, а хорошее топливо-октановое число 100. Октановое число бензиновой фракции, получаемой из сырой нефти, обычно не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонаторной присадки, в качестве которой используется тетраэтилсвинец (IV), Рb(С 2 Н 5) 4 . Тетраэтилсвинец представляет собой бесцветную жидкость, которую получают при нагревании хлорэтана со сплавом натрия и свинца:

При горении бензина, содержащего эту присадку, образуются частицы свинца и оксида свинца (II). Они замедляют определенные стадии горения бензинового топлива и тем самым препятствуют его детонации. Вместе с тетраэтилсвинцом в бензин добавляют еще 1,2-дибромоэтан. Он реагирует со свинцом и свинцом (II), образуя бромид свинца (II). Поскольку бромид свинца (II) представляет собой летучее соединение, он удаляется из автомобильного двигателя с выхлопными газами. Бензиновый дистиллят широкого фракционного состава, например от температуры начала кипения и до 180 °С, насосом прокачивается через теплообменники и подается в первый змеевик печи, а затем в ректификационную колонну. Головной продукт этой колонны - фракция н. к. - 85 °С, пройдя аппарат воздушного охлаждения и холодильник, поступает в приемник. Часть конденсата насосом подается как орошение на верх колонны, а остальное количество - в другую колонну. Снабжение теплом нижней части колонны осуществляется циркулирующей флегмой (фракция 85- 180 °С), прокачиваемой насосом через второй змеевик печи и подается в низ колонны, Остаток с низа колонны направляется насосом в другую колонну.

Уходящие с верха колонны, пары головной фракции (н. к. - 62 °С) конденсируются в аппарате воздушного охлаждения; конденсат, охлажденный в водяном холодильнике, собирается в приемнике. Отсюда конденсат насосом направляется в резервуар, а часть фракции служит орошением для колонны. Остаточный продукт - фракция 62- 85 °С - по выходе из колонны снизу направляется насосом через теплообменник и холодильники в резервуар. В качестве верхнего продукта колонны получают фракцию 85-120 °С, которая, пройдя аппараты, поступает в приемник. Часть конденсата возвращается на вверх колонны в качестве орошения, а балансовое его количество отводится с установки насосом в резервуар.


Сущность нефтеперерабатывающего производства
Процесс переработки нефти можно разделить на 3 основных этапа:
1. Разделение нефтяного сырья на фракции, различающиеся по интервалам температур кипения (первичная переработка) ;
2. Переработка полученных фракций путем химических превращений содержащихся в них углеводородов и выработка компонентов товарных нефтепродуктов (вторичная переработка) ;
3. Смешение компонентов с вовлечением, при необходимости, различных присадок, с получением товарных нефтепродуктов с заданными показателями качества (товарное производство) .
Продукцией НПЗ являются моторные и котельные топлива, сжиженные газы, различные виды сырья для нефтехимических производств, а также, в зависимости от технологической схемы предприятия - смазочные, гидравлические и иные масла, битумы, нефтяные коксы, парафины. Исходя из набора технологических процессов, на НПЗ может быть получено от 5 до более, чем 40 позиций товарных нефтепродуктов.
Нефтепереработка - непрерывное производство, период работы производств между капитальными ремонтами на современных заводах составляет до 3-х лет. Функциональной единицей НПЗ является технологическая установка - производственный объект с набором оборудования, позволяющего осуществить полный цикл того или иного технологического процесса.
В данном материале кратко описаны основные технологические процессы топливного производства - получения моторных и котельных топлив, а также кокса.

Поставка и приём нефти
В России основные объёмы сырой нефти, поставляемой на переработку, поступают на НПЗ от добывающих объединений по магистральным нефтепроводам. Небольшие количества нефти, а также газовый конденсат, поставляются по железной дороге. В государствах-импортёрах нефти, имеющих выход к морю, поставка на припортовые НПЗ осуществляется водным транспортом.
Принятое на завод сырьё поступает в соответствующие емкости товарно-сырьевой базы (рис.1), связанной трубопроводами со всеми технологическими установками НПЗ. Количество поступившей нефти определяется по данным приборного учёта, или путём замеров в сырьевых емкостях.

Подготовка нефти к переработке (электрообессоливание)
Сырая нефть содержит соли, вызывающие сильную коррозию технологического оборудования. Для их удаления нефть, поступающая из сырьевых емкостей, смешивается с водой, в которой соли растворяются, и поступает на ЭЛОУ - электрообессоливащую установку (рис.2). Процесс обессоливания осуществляется в электродегидраторах - цилиндрических аппаратах со смонтированными внутри электродами. Под воздействием тока высокого напряжения (25 кВ и более), смесь воды и нефти (эмульсия) разрушается, вода собирается внизу аппарата и откачивается. Для более эффективного разрушения эмульсии, в сырьё вводятся специальные вещества - деэмульгаторы . Температура процесса - 100-120°С.

Первичная переработка нефти
Обессоленная нефть с ЭЛОУ поступает на установку атмосферно-вакуумной перегонки нефти, которая на российских НПЗ обозначается аббревиатурой АВТ - атмосферно-вакуумная трубчатка . Такое название обусловлено тем, что нагрев сырья перед разделением его на фракции, осуществляется в змеевиках трубчатых печей (рис.6) за счет тепла сжигания топлива и тепла дымовых газов.
АВТ разделена на два блока - атмосферной и вакуумной перегонки .

1. Атмосферная перегонка
Атмосферная перегонка (рис. 3,4) предназначена для отбора светлых нефтяных фракций - бензиновой, керосиновой и дизельных, выкипающих до 360°С, потенциальный выход которых составляет 45-60% на нефть. Остаток атмосферной перегонки - мазут.
Процесс заключается в разделении нагретой в печи нефти на отдельные фракции в ректификационной колонне - цилиндрическом вертикальном аппарате, внутри которого расположены контактные устройства (тарелки) , через которые пары движутся вверх, а жидкость - вниз. Ректификационные колонны различных размеров и конфигураций применяются практически на всех установках нефтеперерабатывающего производства, количество тарелок в них варьируется от 20 до 60. Предусматривается подвод тепла в нижнюю часть колонны и отвод тепла с верхней части колонны, в связи с чем температура в аппарате постепенно снижается от низа к верху. В результате сверху колонны отводится бензиновая фракция в виде паров, а пары керосиновой и дизельных фракций конденсируются в соответствующих частях колонны и выводятся, мазут остаётся жидким и откачивается с низа колонны.

2. Вакуумная перегонка
Вакуумная перегонка (рис.3,5,6) предназначена для отбора от мазута масляных дистиллятов на НПЗ топливно-масляного профиля, или широкой масляной фракции (вакуумного газойля) на НПЗ топливного профиля. Остатком вакуумной перегонки является гудрон.
Необходимость отбора масляных фракций под вакуумом обусловлена тем, что при температуре свыше 380°С начинается термическое разложение углеводородов (крекинг) , а конец кипения вакуумного газойля - 520°С и более. Поэтому перегонку ведут при остаточном давлении 40-60 мм рт. ст., что позволяет снизить максимальную температуру в аппарате до 360-380°С.
Разряжение в колонне создается при помощи соответствующего оборудования, ключевыми аппаратами являются паровые или жидкостные эжекторы (рис.7).

3. Стабилизация и вторичная перегонка бензина
Получаемая на атмосферном блоке бензиновая фракция содержит газы (в основном пропан и бутан) в объёме, превышающем требования по качеству, и не может использоваться ни в качестве компонента автобензина, ни в качестве товарного прямогонного бензина. Кроме того, процессы нефтепереработки, направленные на повышение октанового числа бензина и производства ароматических углеводородов в качестве сырья используют узкие бензиновые фракции. Этим обусловлено включение в технологическую схему переработки нефти данного процесса (рис.4), при котором от бензиновой фракции отгоняются сжиженные газы, и осуществляется её разгонка на 2-5 узких фракций на соответствующем количестве колонн.

Продукты первичной переработки нефти охлаждаются в теплообменниках , в которых отдают тепло поступающему на переработку холодному сырью, за счет чего осуществляется экономия технологического топлива, в водяных и воздушных холодильниках и выводятся с производства. Аналогичная схема теплообмена используется и на других установках НПЗ.

Современные установки первичной переработки зачастую являются комбинированными и могут включать в себя вышеперечисленные процессы в различной конфигурации. Мощность таких установок составляет от 3 до 6 млн. тонн по сырой нефти в год.
На заводах сооружается несколько установок первичной переработки во избежание полной остановки завода при выводе одной из установок в ремонт.

Продукты первичной переработки нефти

Наименование

Интервалы кипения
(состав)

Где отбирается

Где используется
(в порядке приоритета)

Рефлюкс стабилизации

Пропан, бутан, изобутан

Блок стабилизации

Газофракционирование, товарная продукция, технологическое топливо

Стабильный прямогонный бензин (нафта)

Вторичная перегонка бензина

Смешение бензина, товарная продукция

Стабильная легкая бензиновая

Блок стабилизации

Изомеризация, смешение бензина, товарная продукция

Бензольная

Вторичная перегонка бензина

Производство соответствующих ароматических углеводородов

Толуольная

Вторичная перегонка бензина

Ксилольная

Вторичная перегонка бензина

Сырьё каталитического риформинга

Вторичная перегонка бензина

Каталитический риформинг

Тяжелая бензиновая

Вторичная перегонка бензина

Смешение керосина, зимнего дизтоплива, каталитический риформинг

Компонент керосина

Атмосферная перегонка

Смешение керосина, дизельных топлив

Дизельная

Атмосферная перегонка

Гидроочистка, смешение дизтоплив, мазутов

Атмосферная перегонка (остаток)

Вакуумная перегонка, гидрокрекинг, смешение мазутов

Вакуумный газойль

Вакуумная перегонка

Каталитический крекинг, гидрокрекинг, товарная продукция, смешение мазутов.

Вакуумная перегонка (остаток)

Коксование, гидрокрекинг, смешение мазутов.

*) - н.к. - начало кипения
**) - к.к. - конец кипения

Фотографии установок первичной переработки различной конфигурации

Рис.5. Установка вакуумной перегонки мощностью 1,5 млн. тонн в год на Туркменбашинском НПЗ по проекту фирмы Uhde. Рис. 6. Установка вакуумной перегонки мощностью 1,6 млн. тонн в год на НПЗ "ЛУКОЙЛ-ПНОС". На переднем плане - трубчатая печь (жёлтого цвета). Рис.7. Вакуумсоздающая аппаратура фирмы Graham. Видны 3 эжектора, в которые поступают пары с верха колонны.

Сергей Пронин


Процесс переработки нефти можно разделить на 3 основных технологических процесса:

1. Первичная переработка - Разделение нефтяного сырья на фракции различных интервалов температур кипения;

2. Вторичная переработка - Переработка фракций первичной переработки путем химического превращения содержащихся в них углеводородов и выработка компонентов товарных нефтепродуктов;

3. Товарное производство - Смешение компонентов с использованием различных присадок, с получением товарных н/продуктов с заданными показателями качества.

Номенклатура продукции нефтеперерабатывающего завода (НПЗ) может включать до 40 позиций, в тч:

Моторное топливо,

Сырье для нефтехимического производства,

Смазочное, гидравлическое и прочее масло,

Прочие н/продукты.

Номенклатура н/продуктов, получаемых на конкретных НПЗ, зависит от состава и свойств поставляемой сырой нефти и потребностей в н/продуктах.

Характеристики фракций:

Газы, растворенные в нефти в количестве 1,9 % масс на нефть, и полученные при первичной перегонке нефти, состоят в основном из пропана и бутана. Это - сырье газофракционирующих установок и топливо (бытовой сжиженный газ).

Фракции нк -62 и 62-85 о С имеют небольшое октановое число, поэтому направляется на установку изомеризации для повышения октанового числа.

Фракция 85-120 о С - это сырье каталитического риформинга для получения бензола и толуола, компонентов высокооктанового бензина.

Фракции 85-120 и 120-180 о С - сырье каталитического риформинга для получения компонентов высокооктанового бензина, и компонента реактивного топлива.

Фракция 180-230 о С - компонент реактивного и дизельного топлива.

Фракции 230-280 о С и 280-350 о С - это фракции летнего и зимнего дизельного топлива. Цетановое число объединенной фракции 240 - 350 о С = 55 . Температура застывания -12 о С. Депарафинизация фракции 230 - 350 о С позволяет получить зимнее дизтопливо.

Фракция 350-500 о С - вакуумный газойль - сырье процессов каталитического крекинга и гидрокрекинга для получения высокооктанового бензина.

Фракция, выкипающая при температурах выше 500 о С - гудрон - используется как сырье установок термического крекинга, висбрекинга, коксования, производства битума.

Нефтепереработка - непрерывный технологический процесс, остановка которого предусмотрена только для проведения планово - предупредительного ремонта (ППР), ориентировочно каждые 3 года.

Одна из основных задач модернизации НПЗ, проводимой компаниями, - это увеличение межремонтного периода, который, к примеру, у Московского НПЗ составляет около 4,5 лет.

Основная техническая единица НПЗ - технологическая установка, комплекс оборудования которой позволяет выполнить все операции основных технологических процессов переработки.

Основные операции

1. Поставка и прием нефти.

Основные пути доставки сырья на НПЗ:

Магистральные нефтепроводы (МНП) - основной для РФ вариант доставки сырой нефти,

По железной дороге с использованием вагонов - цистерн ,

Нефтеналивными танкерами для прибрежных НПЗ

Нефть поступает на заводской нефтетерминал (рис 1) в (обычно, типа Шухова), который связан нефтепроводами со всеми технологическими установками завода.

Учет принятой на нефтетерминал нефти производится по приборам или путем замеров в нефтяных резервуарах.

2. Первичная переработка

2.1. Подготовка нефти к переработке (электрообессоливание).

Обессоливание служит для уменьшения коррозии технологического оборудования от сырой нефти.

Поступающую из нефтерезервуаров сырую нефть смешивают с водой для растворения солей и отправляют на ЭЛОУ - электрообессоливающую установку.

2.2.3. Стабилизация и вторичная перегонка бензина

Получаемая на блоке АВТ бензиновая фракция не может быть использована по следующим причинам:

Содержит газы, в основном пропан и бутан, в превышающем требования по качеству объеме, что не позволяет использовать их как компоненты автомобильного бензина или товарного прямогонного бензина,

Процессы нефтепереработки, направленные на повышение октанового числа бензина и производства ароматических углеводородов в качестве сырья используют узкие бензиновые фракции.

Поэтому используется техпроцесс, в результате которого от бензиновой фракции отгоняются сжиженные газы, и осуществляется ее разгонка на 2-5 узких фракций на соответствующем количестве колонн.

Продукты первичной переработки нефти , собственно, как и продукты в других техпроцессах переработки, охлаждаются:

В теплообменниках, что обеспечивает экономию технологического топлива,

В водяных и воздушных холодильниках.

Установка первичной переработки - обычно комбинированные ЭЛОУ -АВТ - 6 мощностью переработки до 6 млн т/ год нефти, в составе:

Блока ЭЛОУ, предназначенного для подготовки нефти к переработке путем удаления из нее воды и солей,

Блока АТ, предназначенного для разгонки светлых нефтепродуктов на узкие фракции,

Блока ВТ, предназначен для разгонки мазута (>350 о С) на фракции,

Блока стабилизации, предназначенного для удаления из бензина газообразных компонентов, в тч коррозийно-активного сероводорода и углеводородных газов,

Блока вторичной разгонки бензиновых фракций, предназначенного для разделения бензина на фракции.

В стандартной конфигурации установки, сырая нефть смешивается с деэмульгатором, нагревается в теплообменниках, 4 мя параллельными потоками обессоливается в 2 х ступенях горизонтальных электродегидраторов, дополнительно нагревается в теплообменниках и направляется в отбензинивающую колонну.

Тепло к нижнейчасти этой колонны подводится горячей струей, циркулирующей через печь.

Далее частично отбензиненная нефть из колонны после нагрева в печи направляется в основную колонну, где осуществляется ректификация с получением паров бензина в верхней части колонны, 3 боковых дистиллятов из отпарных колонн и мазута в нижней части колонны.

Отвод тепла в колонне осуществляется верхним испаряющим орошением и 2 мя промежуточными циркуляционными орошениями.

Смесь бензиновых фракций из колонн и направляется на стабилизацию в колонну, где сверху отбираются легкие головные фракции (жидкая головка), а снизу- стабильный бензин.

Стабильный бензин в колоннах подвергается вторичной перегонке с получением узких фракций, используемых в качестве сырья для каталитического риформинга.

Тепло к низу стабилизатора и колонн вторичной перегонки подводится циркулирующими флегмами, нагреваемыми в печи.

Фотографии установок первичной переработки различной конфигурации

3. Вторичная переработка нефти

Продукты первичной переработки нефти, как правило, не являются товарными н/продуктами.

Например, октановое число бензиновой фракции составляет около 65 пунктов, содержание серы в дизельной фракции может достигать 1,0% и более, тогда как норматив составляет, в зависимости от марки, 0,005% - 0,2%.

Кроме того, темные нефтяные фракции могут быть подвергнуты дальнейшей квалифицированной переработке.

Поэтому, нефтяные фракции поступают на установки вторичных процессов, которые обеспечивают улучшение качества н/продуктов и углубление переработки нефти.

Каталитический крекинг () - важнейший процесс нефтепереработки, существенно влияющий на эффективность НПЗ в целом.

Сущность процесса заключается в разложении углеводородов, входящих в состав сырья (вакуумного газойля) под воздействием температуры в присутствии цеолитсодержащего алюмосиликатного катализатора.

Целевой продукт установки КК - высокооктановый компонент бензина с октановым числом 90 п и более, его выход составляет 50 - 65% в зависимости от используемого сырья, применяемой технологии и режима.

Высокое октановое число обусловлено тем, что при каткрекинге происходит также изомеризация.

В ходе процесса образуются газы, содержащие пропилен и бутилены, используемые в качестве сырья для нефтехимии и производства высокооктановых компонентов бензина, легкий газойль - компонент дизельных и печных топлив, и тяжелый газойль - сырье для производства сажи, или компонент мазутов.

Мощность современных установок в среднем 1,5 - 2,5 млн т/год, но есть и 4,0 млн т/год.

Ключевым участком установки является реакторно-регенераторный блок.

В состав блока входит печь нагрева сырья, реактор, в котором непосредственно происходят реакции крекинга, и регенератор катализатора.

Назначение регенератора - выжиг кокса, образующегося в ходе крекинга и осаждающегося на поверхности катализатора. Реактор, регенератор и узел ввода сырья связаны трубопроводами (линиями пневмотранспорта), по которым циркулирует катализатор.

Мощностей каталитического крекинга на российских НПЗ в настоящее время недостаточно, и за счет ввода новых установок решается проблема с прогнозируемым дефицитом бензина.

Сырье с температурой 500-520°С в смеси с пылевидным катализатором движется по лифт-реактору вверх в течение 2-4 секунд и подвергается крекингу.

Продукты крекинга поступают в сепаратор, расположенный сверху лифт-реактора, где завершаются химические реакции и происходит отделение катализатора, который отводится из нижней части сепаратора и самотеком поступает в регенератор, в котором при температуре 700°С осуществляется выжиг кокса.

После этого восстановленный катализатор возвращается на узел ввода сырья.

Давление в реакторно-регенераторном блоке близко к атмосферному.

Общая высота реакторно-регенераторного блока составляет 30 - 55 м, диаметры сепаратора и регенератора - 8 и 11 м соответственно для установки мощностью 2,0 млн т/год.

Продукты крекинга уходят с верха сепаратора, охлаждаются и поступают на ректификацию.

Каткрекинг может входить в состав комбинированных установок, включающих предварительную гидроочистку или легкий гидрокрекинг сырья, очистку и фракционирование газов.

В правой части - реактор, слева от него - регенератор

Гидрокрекинг - процесс, направленный на получение высококачественных керосиновых и дизельных дистиллятов, а также вакуумного газойля путем крекинга углеводородов исходного сырья в присутствии водорода.

Одновременно с крекингом происходит очистка продуктов от серы, насыщение олефинов и ароматических соединений, что обуславливает высокие эксплуатационные и экологические характеристики получаемых топлив.

Получаемая бензиновая фракция имеет невысокое октановое число, ее тяжелая часть может служить сырьем риформинга.

Гидрокрекинг также используется в масляном производстве для получения высококачественных основ масел, близких по эксплуатационным характеристикам к синтетическим.

Линейка сырья гидрокрекинга довольно широкая - прямогонный вакуумный газойль, газойли каталитического крекинга и коксования, побочные продукты маслоблока, мазут, гудрон.
Установки гидрокрекинга, как правило, строятся большой единичной мощности переработки - 3-4 млн т/год.

Обычно объемов водорода, получаемых на установках риформинга, недостаточно для обеспечения гидрокрекинга, поэтому на НПЗ сооружаются отдельные установки по производству водорода путем паровой конверсии углеводородных газов.

Технологические схемы принципиально схожи с установками гидроочистки - сырье, смешанное с водородосодержащим газом (ВСГ), нагревается в печи, поступает в реактор со слоем катализатора, продукты из реактора отделяются от газов и поступают на ректификацию.

Однако, реакции гидрокрекинга протекают с выделением тепла, поэтому технологической схемой предусматривается ввод в зону реакции холодного ВСГ, расходом которого регулируется температура. Гидрокрекинг - один из самых опасных процессов нефтепереработки, при выходе температурного режима из-под контроля, происходит резкий рост температуры, приводящий к взрыву реакторного блока.

Аппаратурное оформление и технологический режим установок гидрокрекинга различаются в зависимости от задач, обусловленных технологической схемой конкретного НПЗ, и используемого сырья.

Например, для получения малосернистого вакуумного газойля и относительно небольшого количества светлых (легкий гидрокрекинг), процесс ведется при давлении до 80 атм на одном реакторе при температуре около 350°С.

Для максимального выхода светлых (до 90%, в том числе до 20% бензиновой фракции на сырье) процесс осуществляется на 2 х реакторах.

При этом, продукты после 1 го реактора поступают в ректификационную колонну, где отгоняются полученные в результате химических реакций светлые, а остаток поступает во 2 й реактор, где повторно подвергается гидрокрекингу.

В данном случае, при гидрокрекинге вакуумного газойля давление составляет около 180 атм, а при гидрокрекинге мазута и гудрона - более 300.

Температура процесса, соответственно, варьируется в интервале 380 - 450°С и выше.

В России технология гидрокрекинга внедрена в 2000 х гг на НПЗ в Перми, Ярославле и Уфе, на ряде заводов установки гидроочистки реконструированы под процесс легкого гидрокрекинга.

Совместное строительство установок гидрокрекинга и каталитического крекинга в рамках комплексов глубокой переработки нефти представляется наиболее эффективным для производства высокооктановых бензинов и высококачественных средних дистиллятов.

4. Товарное производство

В ходе вышеуказанных технологических процессов вырабатываются только компоненты моторных, авиационных и котельных топлив с различными показателями качества.

Например, октановое число прямогонного бензина составляет около 65, риформата - 95-100, бензина коксования - 60.

Другие показатели качества (например, фракционный состав, содержание серы) у компонентов также различаются.

Для получения товарных н/продуктов организуется смешение полученных компонентов в соответствующих емкостях НПЗ в соотношениях, которые обеспечивают нормируемые показатели качества.

Расчет рецептуры смешения () компонентов осуществляется при помощи модулей математических моделей, используемых для планирования производства по НПЗ в целом.

Исходными данными для моделирования являются прогнозные остатки сырья, компонентов и товарной продукции, план реализации н/продуктов в разрезе ассортимента, плановый объем поставок нефти. Таким образом возможно рассчитать наиболее эффективные соотношения между компонентами при смешении.

Зачастую на заводах используются устоявшиеся рецептуры смешения, которые корректируются при изменении технологической схемы.

Компоненты н/продуктов в заданном соотношении закачиваются в емкость для смешения, куда также могут подаваться присадки.

Полученные товарные н/продукты проходят контроль качества и откачиваются в резервуары товарно-сырьевой базы, откуда отгружаются потребителю.

5. Доставка нефтепродуктов

Перевозка ж/д транспортом - основной способ доставки н/продуктов в России. Для погрузки в используются наливные эстакады.

По магистральным нефтепродуктопроводам () Транснефтепродукта,

Речными и морскими судами.

Сырая нефть является термином, который употребляют для обозначения необработанной нефти - сырья, которое выходит из-под земли как есть. Таким образом, сырая нефть является ископаемым топливом, а это означает, что она произведена естественным природным путём из разлагающихся растений и животных, обитающих в древних морях миллионы лет назад - большинство мест, где чаще всего находят нефть, когда-то были дном морей. Сырая нефть в зависимости от месторождения бывает разной и изменяется в цвете и консистенции: от ярко-чёрной (мокрый асфальт) и очень вязкой, до немного прозрачной и почти твёрдой.


Главная ценность и польза нефти заключается в том, что она является отправной точкой для очень многих различных веществ, так как она содержит углеводороды. Углеводороды - это молекулы, которые, очевидно, содержат водород и углерод, и отличаются друг от друга лишь тем, что могут быть различной длины и структуры - от прямых цепочек до разветвлённых цепей с кольцами.

Существуют две вещи, которые делают углеводороды интересными для химиков:

  1. Углеводороды содержат много потенциальной энергии. Многое из того, что получено из сырой нефти, как то: бензин, дизельное топливо , парафин и т.д. - ценно именно этой потенциальной энергией.
  2. Углеводороды могут принимать множество различных форм. Наименьшим углеводородом (по чилу атомов) является метан (СН 4), который представляет собой газ, который легче воздуха. Более длинные цепочки с 5 или более атомами углерода являются в подавляющем большинстве случаев жидкостями. А уж очень длинные цепочки - твердые, например, воск или смола. По химической структуре "сшивания" углеводородных цепей Вы сможете получить все: от синтетического каучука до нейлона и пластика. Углеводородные цепочки на самом деле очень универсальны!

Основные классы углеводородов в сырой нефти включают в себя:

  • Парафины с общей формулой C n H 2n+2 (n представляет собой целое число, обычно от 1 до 20) с прямой структурой или разветвленной цепью могут представлять газы или жидкости, которые кипят уже при комнатной температуре в зависимости от примеров молекул: метан, этан, пропан, бутан, изобутан, пентан, гексан.
  • Ароматики с общей формулой: C 6 H 5 -Y (Y представляет собой большую прямую молекулу, которая соединяется с бензольным кольцом) - это кольчатые структуры с одним или более кольцами, которые содержат шесть атомов углерода, с чередованием двойных простых связей между атомами углерода. Яркие примеры ароматиков: бензол и нафталин.
  • Нафтены или циклоалканы с общей формулой C n H 2n (n является целым числом, как правило, от 1 до 20) - это кольчатые структуры с одним или несколькими кольцами, которые содержат только простые связи между атомами углерода. Это, как правило, жидкости: циклогексан, метилциклопентан и другие.
  • Алкены с общей формулой C n H 2n (n представляет собой целое число, обычно от 1 до 20) - это линейные или разветвлённые цепные молекулы, содержащие одну углерод-углеродную двойную связь, которые могут быть жидкостью или газом, например: этилен, бутен, изобутен.
  • Алкины с общей формулой: C n H 2n-2 (n представляет собой целое число, обычно от 1 до 20) - это линейные или разветвлённые цепные молекулы, содержащие две углерод-углеродные двойные связи, которые могут быть жидкостью или газом, например: ацетилен, бутадиены.

Теперь, зная структуру нефти, давайте посмотрим, что мы можем с ней сделать.

Как работает нефтепереработка?

Процесс переработки нефти начинается с дробной ректификационной колонны.


Типичный нефтеперерабатывающий завод

Главная проблема с сырой нефтью заключается в том, что она содержит сотни различных типов углеводородов, смешанные все вместе. И наша задача заключается в том, чтобы отделить различные виды углеводородов, чтобы получить что-нибудь полезное. К счастью, есть простой способ отделить эти вещи, и это то, что нефтепереработка и делает.

Различные длины углеводородной цепи имеют прогрессивно более высокие точки кипения, так что они могут быть разделены простой перегонкой с различными температурами. Проще говоря, нагревая нефть до какой-либо температуры, начинают закипать определённые цепочки углеводородов, и, таким образом, мы можем отделять "зёрна от плевел". Это то, что происходит на нефтеперерабатывающем заводе - в одной части процесса нефть нагревают, и различные цепи выкипают при соответствующих температурах кипения. Каждая отличающаяся длина цепи имеет своё уникальное свойство, что делает её полезной по-своему.

Чтобы понять разнообразие, содержащееся в сырой нефти, и понять, почему переработка сырой нефти настолько важна в нашей цивилизации, посмотрите на следующий список продуктов, которые получаются из сырой нефти:

Нефтяные газы - используются для отопления, приготовления пищи, изготовления пластмасс:

  • это небольшие алканы (от 1 до 4 атомов углерода)
  • широко известны по таким названиям как метан, этан, пропан, бутан
  • диапазон кипения - менее 40 градусов по Цельсию
  • часто сжижаемые под давлением газы

Нафта или лигроин - промежуточный продукт, который будет дополнительно обработан, чтобы впоследствии стать бензином:

  • содержит от 5 до 9 атомов алканов углерода
  • диапазон кипения - от 60 до 100 градусов по Цельсию

Бензин - моторное топливо:

  • всегда жидкий продукт
  • представляет собой смесь алканов и циклоалканов (от 5 до 12 атомов углерода)
  • диапазон кипения - от 40 до 205 градусов по Цельсию

Керосин - топливо для реактивных двигателей и тракторов; исходный материал для изготовления других продуктов:

  • жидкость
  • смесь алканов (от 10 до 18 атомов углерода) и ароматических углеводородов
  • диапазон кипения - от 175 до 325 градусов по Цельсию

Дизельный дистиллят - используется для дизельного топлива и мазута; исходный материал для изготовления других продуктов:

  • жидкость
  • алканы, содержащие 12 или более атомов углерода
  • диапазон кипения - от 250 до 350 градусов по Цельсию

Смазочные масла - используются для изготовления моторного масла, жира, других смазочных материалов:

  • жидкость
  • длинноцепочечные структуры (от 20 до 50 углеродных атомов) алканы, циклоалканы, ароматики
  • диапазон кипения - от 300 до 370 градусов по Цельсию

Мазут - используется для промышленного топлива; исходный материал для изготовления других продуктов:

  • жидкость
  • длинноцепочечные структуры (от 20 до 70 углеродных атомов) алканы, циклоалканы, ароматики
  • диапазон кипения - 370 до 600 градусов по Цельсию

Остатки продуктов переработки - кокс, асфальт, гудрон, парафины; исходный материал для изготовления других продуктов:

  • твердые частицы
  • множественные кольцевые соединения с 70 или более атомами углерода
  • диапазон кипения не менее 600 градусов по Цельсию.

Вы, возможно, заметили, что все эти продукты имеют различные размеры и диапазоны кипения. Химики воспользовались этими свойствами для нефтепереработки. Давайте теперь далее узнаем детали этого увлекательного процесса!

Подробный процесс переработки нефти

Как упоминалось ранее, баррель сырой нефти имеет смесь всевозможных углеводородов в себе. Нефтепереработка отделяет от всей этой "компании разнорасовых представителей" полезные вещества. При этом, происходят следующие группы производственные химические процессы, которые, в принципе, есть на каждой нефтеперерабатывающей фабрике:

  • Самый старый и самый распространённый способ отделить от нефти различные компоненты (их называют фракции) - это сделать это, используя различия в температуре кипения. Этот процесс называется фракционной перегонкой .
  • Новые методы использования химической обработки в некоторых из фракций используют метод преобразования. Химическая обработка, например, может нарушить длинные цепочки на более короткие. Это позволяет нефтеперерабатывающему заводу превратить дизельное топливо в бензин в зависимости, например, от спроса.
  • Нефтеперерабатывающие заводы, кроме того, после процесса фракционной перегонки должны очищать фракции в целях удаления из них примесей.
  • Нефтеперерабатывающие заводы объединяют различные фракции (обработанные и необработанные) в смеси, чтобы сделать нужные продукты. Например, различные смеси из различных цепочек могут создать бензины с различным октановым числом.

Продукты переработки нефти отправляются на недолгое хранение в специальные резервуары, пока они не будут доставлены на различные рынки: АЗС, аэропорты и ​​на химические предприятия. В дополнение к созданию продуктов на масляной основе, заводы должны также позаботиться об отходах, появление которых неизбежно, чтобы минимизировать загрязнение воздуха и воды.

Фракционная перегонка

Различные компоненты нефти имеют различные размеры, вес и температуры кипения; так, первый шаг заключается в разделении этих компонентов. Поскольку они имеют различные температуры кипения, они могут быть разделены легко с помощью процесса, называемого фракционной перегонкой.

Этапы фракционной перегонки следующие:

  • Вы нагреваете смесь двух или более веществ (жидкостей) с различными температурами кипения до высокой температуры. Нагревание обычно делается с помощью пара под высоким давлением до температуры около 600 градусов по Цельсию.
  • Смесь кипит, образуя пар (газы); большинство веществ проходят в паровой фазе.
  • Пар поступает в нижнюю часть длинной колонны, которая заполнена лотками или тарелками. Лотки имеют много отверстий или пузырчатые колпачки (аналогично продырявленной крышке на пластиковой бутылке) в них, чтобы позволить пару пройти сквозь них. Они увеличивают время контакта между паром и жидкостью в колонне и помогают сбору жидкостей, которые образуются на различных высотах в колонке. Существует разница температур в этой колонне (очень горячая внизу и холоднее к верхней части).
  • Таким образом, пар поднимается в колонне.
  • При повышении паров через тарелки в колонне, он охлаждается.
  • Когда парообразное вещество достигает высоты, где температура в колонке равна температуре кипения этого вещества, оно будет конденсироваться с образованием жидкости. При этом, вещества с самой низкой температурой кипения будет конденсироваться в самой высокой точке в колонне, а вещества с более высокими температурами кипения будут конденсироваться ниже в колонне.
  • Лотки собирают различные жидкие фракции.
  • Собранные жидкие фракции могут перейти к конденсаторам, которые охлаждают их дальше, а потом идут в резервуары для хранения, либо же они могут отправиться в другие районы для дальнейшей химической переработки

Фракционная перегонка полезна для разделения смеси веществ с узкими различиями в температурах кипения и является наиболее важным шагом в процессе переработки нефти. Процесс переработки нефти начинается с дробной ректификационной колонны. Очень немногие из компонентов выйдут из колонны фракционной перегонки, готовые к продаже на рынке нефтепродуктов. Многие из них должны быть химически обработаны, чтобы быть преобразованными в другие фракции. Например, только 40% дистиллированной сырой нефти станет бензином, однако, бензин является одним из основных продуктов, производимых нефтяными компаниями. Вместо того, чтобы постоянно дистиллировать в больших количествах сырую нефть, нефтяные компании химически обрабатывают другие фракции из ректификационной колонны, чтобы получить тот же бензин; и эта обработка увеличивает выход бензина из каждого барреля сырой нефти.

Химическое преобразование

Вы можете преобразовать одну фракцию в другую с помощью одного из трёх методов:

  1. Разбить большие углеводороды на более мелкие (крекинг)
  2. Объединить мелкие углеводороды, чтобы сделать из них более крупные (унификация)
  3. Переставлять или замещать различные части углеводородов, чтобы получить нужные углеводороды (гидротермальное изменение)

Крекинг

Крекинг принимает большие углеводороды и ломает их на более мелкие. Есть несколько типов крекинга:

  • Тепловой - Вы нагреваете большие углеводороды при высоких температурах (иногда ещё и при высоких давлениях), пока они не распадутся.
  • Паровой - высокая температура пара (более 800 градусов по Цельсию) используется для разрыва этана, бутана и лигроина в этилен и бензол, которые используются для производства химических веществ.
  • Висбрекинг - остаточные вещества из дистилляционной колонны нагревают почти до 500 градусов по Цельсию, охлаждают и быстро сжигают в дистилляционной колонне. Этот процесс снижает вязкость веществ и число тяжёлых масел в них и производит смолы.
  • Коксование - остаточные вещества из дистилляционной колонны нагревают до температуры выше 450 градусов по Цельсию, в результате чего тяжёлый почти чистый углерод остаётся (кокс); кокс очищается от коксования и продаётся.
  • Катализация - используется катализатор для ускорения реакции крекинга. Катализаторы включают цеолит, гидросиликат алюминия, бокситы и алюмосиликат. Каталитический крекинг - это когда горячая жидкость катализатора (538 градусов по Цельсию) расщепляет тяжёлое вещество в дизельные масла и бензин.
  • Гидрокрекинг - подобен каталитическому крекингу, но использует другой катализатор с более низкими температурами, высоким давлением и водородом. Это позволяет расщепить тяжёлую нефть в бензин и керосин (авиатопливо).

Унификация

Иногда Вам нужно объединить мелкие углеводороды, чтобы получить из них более крупные - этот процесс называется унификацией. Основным процессом объединения является при этом каталитический риформинг и в этом случае используется катализатор (смесь из платины и платины-рения), чтобы объединить низкий вес нафты в ароматические соединения, которые используются в создании химических веществ и при смешивании бензина. Значительным побочным продуктом этой реакции является газообразный водород, который затем либо используется для гидрокрекинга, либо попросту продаётся.

Гидротермальное изменение

Иногда структуры молекул в одной фракции переставляются, чтобы произвести другую. Как правило, это делается с помощью процесса, называемого алкилированием . В алкилировании низкомолекулярные соединения, такие как пропилен и бутилен, смешивают в присутствии катализатора , такого как фтористо-водородная кислота или серная кислота (побочный продукт от удаления примесей из многих нефтепродуктов). Продуктами алкилирования являются высокооктановые углеводороды, которые используются в бензиновых смесях для повышения октанового числа.

Конечная обработка (очистка) нефтепродуктов

Дистиллированные и химически обработанные фракции нефти снова обрабатывают, чтобы удалить примеси - с основном, органические соединения, содержащие серу, азот, кислород, воду, растворённые металлы и неорганические соли. Конечную обработку, как правило, делают следующими путями:

  • Колонна серной кислоты удаляет ненасыщенные углеводороды (с двойными углерод-углеродными-облигациями), соединения азота, кислорода и остаточные твёрдые вещества (смолы, асфальт).
  • Абсорбционная колонна заполнена осушителем, чтобы удалить воду.
  • Сероводородные скрубберы удаляют серу и все соединения серы.

После того, как фракции будут обработаны, их охлаждают и затем смешивают вместе, чтобы сделать различные продукты, такие как:

  • Бензин различных марок, с добавками или без добавок.
  • Смазочные масла различных марок и типов (например, 10W-40, 5W-30).
  • Керосин различных марок.
  • Реактивное топливо.
  • Мазут.
  • Другие химические вещества различных марок для изготовления пластмасс и других полимеров.

Нефть представляет собой полезное ископаемое, имеющее консистенцию маслянистой жидкости. Данное горючее вещество в основном имеет черный цвет, но это зависит от района его добычи. Рассматривая нефть с химической точки зрения, можно сказать, что это вещество является сложной смесью углеводородов, в которой также присутствуют такие примеси соединений, как сера, азот и пр. Запах жидкости зависит от содержания в ее составе сернистых соединений и ароматических углеводородов. Нефть использовали в различных целях, но только в прошлом веке начала использоваться прямая перегонка нефти, она стала главным сырьем для изготовления топлива и множества органичных составов.

Состав нефти

Впервые изучением нефти в XIX веке начал заниматься Карл Шорлеммер, который являлся известным немецким химиком. В ходе проведения исследований вещества он обнаружил в нем простейшие углеводороды бутан (С4Н10), гексан (С6Н14) и пентан (С5Н12). Спустя некоторое время российский ученый В. В. Марковников в процессе исследования обнаружил в нефти достаточное количество циклических насыщенных углеводородов — циклопентана (С5Н10) и циклогексана (С6Н12).

На сегодняшний день установлено, что нефть и нефтепродукты соответственно имеют в своем составе более одной тысячи различных веществ, но некоторые из них представлены в малом количестве. Стоит отметить, что в данном веществе содержатся алициклические, насыщенные, ненасыщенные и ароматические углеводороды, имеющие разнообразное строение. В состав нефти также могут входить соединения азота, серы, а также кислородсодержащие соединения (фенолы и кислоты).

В настоящее время технология переработки нефти включает в себя такие процессы: однократная перегонка нефти и ратификация смесей. К ней часто применяются обобщенные наименования.

В процессе разделения нефти путем перегонки и ратификации получают фракции и дистилляты. Они выкипают при определенных температурах и представляют собой довольно сложные смеси. При этом отдельные фракции нефти в некоторых случаях состоят из небольшого количества компонентов, значительно различающихся температурами кипения. По этой причине смеси могут классифицироваться на дискретные, непрерывные и дискретно-непрерывные.

Продукты переработки нефти

К продуктам переработки относится парафин, вазелин, церезин, различные масла и прочие вещества с выраженными водоотталкивающими свойствами. Благодаря данной особенности их применяют для изготовления чистящих средств и кремов.

Так называемая первичная перегонка нефти выполняется благодаря естественному напору подземных вод, которые располагаются под нефтяной залежью. Под давлением нефть будет поднята на поверхность с глубины. Ускорить процедуру можно с применением насосов. Данная процедура позволяет добыть около 25-30% нефти. Для вторичной добычи в нефтяной пласт в основном накачивают воду или же нагнетают диоксид углерода. В результате этих действий на поверхность можно вытеснить еще примерно 35% вещества.

В процессе первичной перегонки нефти и вторичной термической переработки выделяются продукты перегонки нефти, в которых содержится сероводород. В значительной степени это зависит от условий предварительной сепарации нефти, а также эксплуатируемых месторождений. Содержание в составе нефти сероводорода является важным показателем, определяющим множество факторов.

Методы переработки нефти. Фракционная перегонка

Главным методом переработки является фракционная перегонка нефти. Данная процедура подразумевает разделение вещества на фракции, которые отличаются по составу. Дистилляция основана на различии в температурах кипения компонентов нефти.

Фракция представляет собой химическую часть вещества с одинаковыми физическими и химическими свойствами, которая выделяется в процессе перегонки.

Прямая перегонка представляет собой физический метод переработки нефти с применением атмосферно-вакуумной установки.

Принцип работы атмосферно-вакуумной установки

В специальной трубчатой печи происходит нагрев нефти при температуре 350°С. В результате этой процедуры образуется смесь жидкого остатка и паров вещества, которая поступает в ректификационную колонну с теплообменниками.

Далее соблюдается схема перегонки нефти, которая предусматривает осуществление в ректификационной колонне разделения паров нефти на фракции, которые составляют собой различные нефтепродукты. При этом температура их кипения имеет различия в несколько градусов.

Тяжелые фракции вещества поступают в устройство в жидкой фазе. Они отделяются от паров в нижней ее части и в виде мазута отводятся из нее.

Применяются следующие способы перегонки нефти для получения топлива в зависимости от химического состава нефти. В первом случае отбирают авиационные бензины в интервале температур кипения от 40 до 150°С, а также керосин для производства реактивного топлива - от 150 до 300°С. Во втором случае добывают автомобильные бензины при температуре кипения от 40 до 200°С, а дизельные топлива - от 200 до 350°С.

Мазут, который остается после отгона топливных фракций, применяют для образования крекинг-бензинов и масел. Углеводороды, имеющие температуру кипения меньше 40°С, используются в качестве сырья для изготовления определенных синтетических продуктов, добавок к некоторым бензинам, а также как топливо для автомобилей.

Таким образом, вакуумная перегонка нефти позволяет добыть такие дистилляты: бензин, керосин, соляр, лигроин и газойль. Средний выход бензиновых фракций зависит от характеристик добываемого вещества и варьируется от 15 до 20%. Доля остального топлива составляет до 30%. Лигроин обладает большей плотностью, нежели бензин, и применяется для создания высокооктановых бензинов, а также в качестве дизельного топлива для автомобилей. Газойль представляет собой промежуточный продукт между смазочными маслами и керосином. Его образовывает прямая перегонка нефти, после чего его применяют в качестве сырья для каталитического крекинга и топлива для дизелей.

Продукты, получаемые в результате прямой перегонки, отличаются высокой химической стабильностью благодаря отсутствию в своем составе непредельных углеводородов.

Крекинг

Увеличить выход бензиновых фракций можно благодаря применению крекинг-процессов для переработки нефти. Крекинг представляет собой процесс перегонки нефти и нефтепродуктов, который основан на расщеплении молекул сложных углеводородов в условиях высоких давлений и температур. В 1875 году крекинг был впервые предложен А.А. Летним, российским ученым, после чего он был разработан в 1891 году В.Г. Шуховым. Несмотря на это, первая промышленная установка, в которой предусматривалась прямая перегонка, была сооружена в США.

Крекинг делится на следующие виды: термический, каталитический, гидрокрекинг и каталитический риформинг. Термический крекинг применяется для образования бензина, керосина и дизельного топлива. К примеру, при температуре до 500°С и давлении 5 МПа имеющийся в составе дизельного топлива и керосина углеводород цетан разлагается на вещества, которые входят в состав бензина.

Термический крекинг

Бензин, создаваемый путем термического крекинга, обладает невысоким октановым числом и большим содержанием непредельных углеводородов. Из этого можно сделать вывод, что бензин имеет плохую химическую стабильность. Поэтому его будут применять только в качестве компонента для образования товарных бензинов.

На сегодняшний день установки для термического крекинга не сооружаются. Это объясняется тем, что с их помощью получают продукты перегонки нефти, которые в условиях хранения окисляются. В них образовываются смолы, поэтому в вещество вводят специальные присадки, предназначенные для снижения степени осмоления.

Каталитический крекинг

Каталитический крекинг представляет собой процесс перегонки нефти для получения бензина, который основан на расщеплении углеводородов и изменении их структуры, что происходит благодаря катализатору и высоким температурам. Впервые каталитический крекинг был осуществлен в 1919 году в России на заводской установке.

При каталитическом крекинге в качестве сырья применяют фракции соляра и газойля, которые образуются в случае прямой перегонки нефти. Их нагревают до температуры около 500°С при соблюдении давления 0,15 МПа с использованием алюмоселикатного катализатора. Он позволяет ускорить процедуру расщепления молекул сырья и превращает продукты распада в ароматические углеводороды. Прямая перегонка позволяет бензинам иметь большее октановое число, нежели при термическом крекинге. Продукты каталитического крекинга представляют собой обязательные составляющие топлива марки А-72 и А-76.

Гидрокрекинг

Гидрокрекинг представляет собой процедуру переработки, которая распространяется на нефть и нефтепродукты. Он состоит из крекирования и гидрирования сырья. Его выполняют в условиях температуры около 400°С и давления водорода до 20 МПа. При этом используются специальные молибденовые катализаторы. В таком случае октановое число бензиновых фракций будет еще больше. Данный процесс также способен повысить выход светлых нефтепродуктов, таких как реактивное и дизельное топливо, бензин.

Каталитический риформинг

Сырьем для каталитического риформинга служат бензиновые фракции, получаемые при температуре не более 180°С в процессе первичной перегонки нефти. Данную процедуру производят в условиях водосодержащего газа. При этом температура составляет около 500°С, а давление 4 МПа. Также применяется платиновый или молибденовый катализатор.

Гидроформингом называют риформинг с применением молибденового катализатора, а платформингом - процедуру с использованием платинового катализатора. Более простым и безопасным методом является платформинг, поэтому его применяют намного чаще. Для получения высокооктанового компонента автомобильных бензинов используют каталитический риформинг.

Получение смазочных масел

В 1876 году В.И. Рогозиным был сооружен первый в мире завод по изготовлению мазута и масел около Нижнего Новгорода. Рассматривая способ производства, масла можно разделить остаточные и дистиллятные масла. В первом случае мазут нагревают до температуры около 400°С в вакуумной колонне. Из мазута выходит только 50% дистиллятных масел, а остальная часть состоит из гудрона.

Остаточные масла представляют собой очищенные гудроны. Для их образования полугудрон или мазут дополняют сжиженным пропаном, в условиях невысокой температуры около 50°С. Прямая перегонка позволяет производить трансмиссионные и авиационные масла. В смазочных маслах, которые будут получены из мазута, содержатся углеводороды. Кроме них, имеются сернистые соединения, нафтеновые кислоты, а также смолисто-асфальтовые вещества, поэтому необходимо выполнять их очистку.

Нефтеперерабатывающая промышленность России

Нефтеперерабатывающая промышленность представляет собой отрасль нефтяной промышленности России. На данный момент в стране действует более тридцати крупных предприятий, специализирующихся на переработке нефти. Ими добываются большие объемы автомобильного бензина, дизельного топлива и мазута. Преимущественное количество предприятий начало свое существование в последние два десятилетия. При этом некоторые из них занимают лидирующие позиции на рынке.

В большинстве случаев ими применяется фракционная перегонка нефти, которая наиболее актуальна в современных условиях. Предприятиями изготавливаются высококачественные средства, которые пользуются большим спросом не только на отечественном, но и на мировом рынке.



Читайте также: