Формула максимальной высоты полета. Баллистическое движение

В разделе на вопрос Физика. Баллистическое движение. Помогите найти Начальную скорость. заданный автором Eldar Nezametdinov лучший ответ это Если альфа - угол с линией горизонта, т. е. напрвлением ОХ, то Uо надо разложить на вертикальную (вдоль оси ОY и горизонтальную составляющие, т. е Uoy=Uo Sin(alfa) и Uox= UoCos(alfa)
Изменение скорости вдоль оси OY в скалярном выражении при движении вверх (т. е. направление вектором скорости и ускорения мы уже учли)
Uy=Uoy -gt=Uo Sin alfa - gt/2 =0, где t- время всего полета
Т. е. Uo=(gt)/(2 Sin(alfa))=(10х2)/(2х0.5)=20 (м/c)
Eldar Nezametdinov
Мыслитель
(5046)
откуда двойка взялась?
Дело такое
Uy = Uosina - gT*T/2
у вас написано
Uy = Uosina - gT/2
я вот не пойму) как вы так отделались от Т*Т сделали Т....причем равную 2ке)

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Физика. Баллистическое движение. Помогите найти Начальную скорость.

Ответ от Леонид Фурсов [гуру]
решение. x(t)=v0*(cos(a))*t; y(t)=v0*(sin(a))*t-0,5*g*t^2; vy=v0*(sin(a))-g*t;
1. vy=0 (условие для нахождения максимальной высоты подъема. Сначала находите время подъема, потом подставляете в формулу y(t)=v0*(sin(a))*t-0,5*g*t^2 и находите максимальную высоту подъема) .
2. y(t)=0 -условие для нахождения длительности полета, а по нему и дальности полета.


Баллистика и баллистическое движение

Подготовил ученик 9 «м» класса Зайцев Пётр.

Ι Введение:

1) Цели и задачи работы:

“Я выбрал эту тему, потому что мне её посоветовал классный руководитель-учитель по физике в моём классе, а также мне самому эта тема очень понравилась. В этой работе я хочу много узнать о баллистике и баллистическом движении тел”.

ΙΙ Основной материал:

1) Основы баллистики и баллистического движения.

а) история возникновения баллистики:

В многочисленных войнах на протяжении всей истории человечества враждующие стороны, доказывая своё превосходство, использовали сначала камни, копья, и стрелы, а затем ядра, пули, снаряды, и бомбы.

Успех сражения во многом определялся точностью попадания в цель.

При этом точный бросок камня, поражение противника летящим копьём или стрелой фиксировались воином визуально. Это позволяло при соответствующей тренировке повторять свой успех в следующем сражении.

Значительно возросшая с развитием техники скорость и дальность полёта снарядов и пуль сделали возможным дистанционные сражения. Однако навыка война, разрешающей способности его глаза было недостаточно для точного попадания в цель артиллерийской дуэли первым.

Желание побеждать стимулировало появление баллистики (от греческого слова ballo-бросаю).

б) основные термины:

Возникновение баллистики относится к 16 в.

Баллистика-наука о движении снарядов, мин, пуль, неуправляемых ракет при стрельбе (пуске). Основные разделы баллистики: внутренняя баллистика и внешняя баллистика. Исследованием реальных процессов, происходящих при горении пороха, движении снарядов, ракет (или их моделей) и т. д., занимается эксперимент баллистики. Внешняя баллистика изучает движение снарядов, мин, пуль, неуправляемых ракет и др. после прекращения их силового взаимодействия со стволом оружия (пусковой установкой), а также факторы, влияющие на это движение. Основные разделы внешней баллистики: изучение сил и моментов, действующих на снаряд в полёте; изучение движения центра масс снаряда для расчета элементов траектории, а также движение снаряда относит. Центра масс с целью определения его устойчивости и характеристик рассеивания. Разделами внешней баллистики являются также теория поправок, разработка методов получения данных для составления таблиц стрельбы и внешнебаллистическое проектирование. Движение снарядов в особых случаях изучается специальными разделами внешней баллистики, авиационной баллистикой, подводной баллистикой и др.

Внутренняя баллистика изучает движение снарядов, мин, пуль и др. в канале ствола оружия под действием пороховых газов, а также другие процессы, происходящие при выстреле в канале или камере пороховой ракеты. Основные разделы внутренней баллистики: пиростатика, изучающая закономерности горения пороха и газообразования в постоянном объёме; пиродинамика, исследующая процессы в канале ствола при выстреле и устанавливающая связь между ними, конструктивными характеристиками канала ствола и условиями заряжания; баллистическое проектирование орудий, ракет, стрелкового оружия. Баллистика (изучает процессы периода последствия) и внутренняя баллистика пороховых ракет (исследует закономерности горения топлива в камере и истечения газов через сопла, а также возникновение сил, действий на неуправляемые ракеты).

Баллистическая гибкость оружия - свойство огнестрельного оружия, позволяющее расширять его боевые возможности повышать эффективность действия за счёт изменения баллистич. характеристик. Достигается путем изменения баллистич. коэффициента (напр., введением тормозных колец) и начальной скорости снаряда (применением переменных зарядов). В сочетании с изменением угла возвышения это позволяет получать большие углы падения и меньшее рассеивание снарядов на промежуточные дальности.

Баллистическая ракета, ракета, полет которой, за исключением относительно небольшого участка, совершается по траектории свободно брошенного тела. В отличие от крылатой ракеты баллистическая ракета не имеет несущих поверхностей для создания подъёмной силы при полёте в атмосфере. Аэродинамическая устойчивость полёта некоторых баллистических ракет обеспечивается стабилизаторами. К баллистическим ракетам относят ракеты различного назначения, ракеты-носители космических аппаратов и др. Они бывают одно- и многоступенчатыми, управляемые и неуправляемыми. Первые боевые баллистические ракеты ФАУ 2- были применены фашисткой Германией в конце мировой войны. Баллистические ракеты с дальностью полёта св.5500 км (по иностранной классификации - св.6500 км) называются межконтинентальными баллистическими ракетами. (МБР). Современные МБР имеют дальность полёта до 11500 км (напр., амер. «Минитмен» 11500 км, «Титан -2» ок.11000 км, «Трайдер-1» около7400 км,). Их пуск производят с наземных (шахтных) пусковых установок или ПЛ. (из надводного или подводного положения). МБР выполняются многоступенчатыми, с жидкостными или твердотопливными двигательными установками, могут оснащаться моноблочными или многозарядными ядерными головными частями.

Баллистическая трасса, спец. оборудованный на арт. полигоне участок местности для эксперимент, изучения движения арт. снарядов, мини др. На баллистической трассе устанавливаются соответственные баллистические приборы и баллистич. мишени, с помощью которых на основе опытных стрельб определяются функция (закон) сопротивления воздуха, аэродинамические характеристики, параметры поступательного и колебат. движения, начальные условия вылета и характеристики рассеивания снарядов.

Баллистические условия стрельбы, совокупность баллистич. характеристик, оказывающих наибольшее влияние на полёт снаряда (пули). Нормальными, или табличными, баллистическими условиями стрельбы считаются условия, при которых масса и начальная скорость снаряда (пули) равны расчётной (табличной), температура зарядов 15С, а форма снаряда (пули) соответствует установленному чертежу.

Баллистические характеристики, основные данные, определяющие закономерности развития процесса выстрела и движения снаряда (мины, гранаты, пули) в канале ствола (внутрибаллистические) или на траектории (внешнебаллистические). Основные внутрибаллистические характеристики: калибр оружия, объём зарядной каморы, плотность заряжания, длина пути снаряда в канале ствола, относительная масса заряда (отношение её к массе снаряда), сила пороха, макс. давление, давление форсирования, характеристики прогрессивности горения пороха и др. К основным внешнебаллистическим характеристикам относятся: начальная скорость, баллистический коэффициент, углы бросания и вылета, срединные отклонения и др.

Баллистический вычислитель, электронный прибор стрельбы (как правило, прямой наводкой) из танков, БМП, малокалиберных зенитных пушек и др. Баллистический вычислитель учитывает сведения о координатах и скорости цели и своего объекта, ветре, тем-ре и давлении воздуха, начальной скорости и углах вылета снаряда и др.

Баллистический спуск, неуправляемое движение спускаемого космического аппарата (капсулы) с момента схода с орбиты до достижения заданной относительно поверхности планеты.

Баллистическое подобие, свойство артиллерийных орудий, заключающееся в сходстве зависимостей, характеризующих процесс горения порохового заряда при выстреле в каналах стволов различных артиллерийных систем. Условия баллистического подобия изучаются теорией подобия, основу которой составляют уравнения внутренней баллистики. На основании этой теории составляются баллистические таблицы, используемые при баллистич. проектировании.

Баллистический коэффициент (С), одна из основных внешнебаллистических характеристик снаряда (ракеты), отражающая влияние его коэффициент формы(i), калибра (d),и массы(q) на способность преодолевать сопротивление воздуха в полёте. Определяется по формуле С=(id/q)1000, где d в м, a q в кг. Чем меньше баллистич. коэффициент, тем легче снаряд преодолевает сопротивление воздуха.

Баллистическая фотокамера, специальное устройство для фотографирования явления выстрела и сопровождающих его процессов внутри канала ствола и на траектории с целью определения качественных и количественных баллистических характеристик оружия. Позволяет осуществлять мгновенное одноразовое фотографирование к.-л. фазы изучаемого процесса или последовательное скоростное фотографирование (более 10 тыс. кадров\с) различных фаз. По способу получения экспозиции Б.Ф. бывают искровые, с газосветными лампами, с электрооптическими затворами и рентгенографичные импульсные.

в) скорость при баллистическом движении.

Для расчёта скорости v снаряда произвольной точке траектории, а также для определения угла , который образует вектор скорости с горизонталью,

достаточно знать проекции скорости на оси X и Y(рис№1).

(рис№1)

Если vи v известны, по теореме Пифагора можно найти скорость:

Отношение катета v, противолежащего углу, к катету v,принадлежащему

к этому углу, определяет tg и соответственно угол :

При равномерном движении по оси X проекция скорости движения vостаётся неизменной и равной проекции начальной скорости v:

Зависимость v(t) определяется формулой:

в которую следует подставить:

Графики зависимости проекций скорости от времени приведены на рис№2.

(рис №2).

В любой точке траектории проекция скорости на ось X остается постоянной. По мере подъема снаряда проекция скорости на ось У уменьшается по линейному закону. При t = 0 она равна = sin а. Найдем промежуток времени, через который проекция этой скорости станет равна нулю:

0 = vsin- gt , t =

Полученный результат совпадает со временем подъема снаряда на максимальную высоту. В верхней точке траектории вертикальная компонента скорости равна нулю.

Следовательно, тело больше не поднимается. При t > проекция скорости

v становится отрицательной. Значит, эта составляющая скорости направлена противоположно оси Y, т. е. тело начинает падать вниз (рис.№3).

(рис№3)

Так как в верхней точке траектории v = 0, то скорость снаряда равна:

г) траектория движения тела в поле тяжести.

Рассмотрим основные параметры траектории снаряда, вылетающего с начальной скоростью v из орудия, направленного под углом α к горизонту (рис №4).

(рис №4)

Движение снаряда происходит в вертикальной плоскости XY, содержащей v.

Выберем начало отсчёта в точке вылета снаряда.

В евклидовом физическом пространстве перемещения тела по координатным

осям X и Y можно рассматривать независимо.

Ускорение свободного падения g направлено вертикально вниз, поэтому по оси X движение будет равномерным.

Это означает, что проекция скорости v остаётся постоянной, равной её значению в начальный момент времени v.

Закон равномерного движения снаряда по оси X имеет вид: x= x+ vt. (5)

По оси Y движение является равномерным, так как вектор ускорения свободного падения g постоянен.

Закон равнопеременного движения снаряда по оси Y можно представить в следующем виде: y = y+vt + . (6)

Криволинейное баллистическое движение тела можно рассматривать как результат сложения двух прямолинейных движений: равномерного движения

по оси X и равнопеременного движения по оси Y.

В выбранной системе координат:

v= vcos α. v= vsin α.

Ускорение свободного падения направлено противоположно оси Y, поэтому

Подставляя x, y, v,v,ав (5) и (6), получаем закон баллистического

движения в координатной форме, в виде системы двух уравнений:

(7)

Уравнение траектории снаряда, или зависимость y(x), можно получить,

исключая из уравнений системы время. Для этого из первого уравнения системы найдём:

Подставляя его во второе уравнение получаем:

Сокращая v в первом слагаемом и учитывая, что = tg α, получаем

уравнение траектории снаряда: y = x tg α – .(8)

д) Траектория баллистического движения.

Построим баллистическую траекторию (8).

Графиком квадратичной функции, как известно, является парабола. В рассматриваемом случае парабола проходит через начало координат,

так как из (8) следует, что у = 0 при х = 0. Ветви параболы направлены вниз, так как коэффициент (- ) при x меньше нуля. (Рис №5).

(рис №5)

Определим основные параметры баллистического движения: время подъема на максимальную высоту, максимальную высоту, время и дальность полета. Вследствие независимости движений по координатным осям подъем снаряда по вертикали определяется только проекцией начальной скорости на ось Y. В соответствии с формулой: , полученной для тела, брошенного вверх с начальной скоростью , время подъема снаряда на максимальную высоту равно:

t=

Максимальная высота подъема может быть рассчитана по формуле ,

если подставить вместо :

y=

На рисунке №5 сопоставляется вертикальное и криволинейное движение с одинаковой начальной скоростью по оси Y. В любой момент времени тело, брошенное вертикально вверх, и тело, брошенное под углом к горизонту с той же вертикальной проекцией скорости, движутся по оси Y синхронно.

Так как парабола симметрична относительно вершины, то время полета снаряда в 2 раза больше времени его подъема на максимальную высоту:

t

Подставляя время полета в закон движения по оси X, получаем максимальную дальность полета:

x

Так как 2 sin cos, а = sin 2, то

x

е) применение баллистического движения на практике.

Представим себе, что из одной точки выпустили несколько снарядов, под различными углами. Например, первый снаряд под углом 30°, второй под углом 40°, третий под углом 60°,а четвертый под углом 75°(рис № 6).

На рисунке №6 зеленым цветом изображен график снаряда выпущенного под углом 30°, белым под углом 45°, фиолетовым под углом 60°, а красным под углом 75°. А теперь посмотрим на графики полёта снарядов и сравним их.(начальная скорость одинакова, и равна 20 км/ч)

Сравнивая эти графики можно вывести некоторую закономерность: с увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается.

2)Теперь рассмотрим другой случай, связанный с различной начальной скоростью, при одинаковом угле вылета. На рисунке №7 зеленым цветом изображен график снаряда выпущенного с начальной скоростью 18 км/ч, белым со скоростью 20 км/ч, фиолетовым со скоростью 22 км/ч, а красным со скоростью 25 км/ч. А теперь посмотрим на графики полёта снарядов и сравним их (угол полёта одинаков и равен 30°). Сравнивая эти графики можно вывести некоторую закономерность: с увеличением начальной скорости вылета снаряда, при одинаковом угле вылета, дальность и высота полёта снаряда увеличиваются.

Вывод: с увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается, а с увеличением начальной скорости вылета снаряда, при одинаковом угле вылета, дальность и высота полёта снаряда увеличиваются.

2)Применение теоретических расчётов к управлению баллистическими ракетами.

а) траектория баллистической ракеты.

Наиболее существенной чертой, отличающей баллистические ракеты от ракет других классов, является характер их траектории. Траектория баллистической ракеты состоит из двух участков – активного и пассивного. На активном участке ракета движется с ускорением под действием силы тяги двигателей.

При этом ракета запасает кинетическую энергию. В конце активного участка траектории, когда ракета приобретёт скорость, имеющую заданную величину

и направление, двигательная установка выключается. После этого головная часть ракеты отделяется от её корпуса и дальше летит за счёт запасённой кинетической энергии. Второй участок траектории (после выключения двигателя) называют участком свободного полёта ракеты, или пассивным участком траектории. Ниже для краткости будем обычно говорить о траектории свободного полёта ракеты, подразумевая при этом траекторию не всей ракеты, а только её головной части.

Баллистические ракеты стартуют с пусковых установок вертикально вверх. Вертикальный пуск позволяет построить наиболее простые пусковые установки и обеспечивает благоприятные условия управления ракетой сразу же после старта. Кроме того, вертикальный пуск позволяет снизить требования к жёсткости корпуса ракеты и, следовательно, уменьшить вес её конструкции.

Управление ракетой осуществляется так, что через несколько секунд после старта она, продолжая подъём вверх, начинает постепенно наклоняться в сторону цели, описывая в пространстве дугу. Угол между продольной осью ракеты и горизонтом (угол тангажа) изменяется при этом на 90º до расчетного конечного значения. Требуемый закон изменения (программа) угла тангажа задается программным механизмом, входящим в бортовую аппаратуру ракеты. На завершающем отрезке активного участка траектории угол тангажа выдерживается, постоянны и ракета летит прямолинейно, а когда скорость достигает расчетной величины - двигательную установку выключают. Кроме величины скорости, на завершающем отрезке активного участка траектории устанавливают с высокой степенью точности также и заданное направление полёта ракеты (направление вектора её скорости). Скорость движения в конце активного участка траектории достигает значительных величин, но ракета набирает эту скорость постепенно. Пока ракета находится в плотных слоях атмосферы, скорость её мала, что позволяет снизить потери энергии на преодоление сопротивления среды.

Момент выключения двигательной установки разделяет траекторию баллистической ракеты на активный и пассивный участки. Поэтому точку траектории, в которой выключаются двигатели, называют граничной точкой. В этой точке управление ракетой обычно заканчивается и весь дальнейший путь к цели она совершает в свободном движении. Дальность полёта баллистических ракет вдоль поверхности Земли, соответствующая активному участку траектории, равна не более чем 4-10% общей дальности. Основную часть траектории баллистических ракет составляют участок свободного полёта.

Для существенного увеличения дальности нужно применять многоступенчатые ракеты.

Многоступенчатые ракеты состоят из отдельных блоков-ступеней, каждая из которых имеет свои двигатели. Ракета стартует с работающей двигательной установкой первой ступени. Когда топливо первой ступени израсходуется, включается двигатель второй ступени, а первая ступень сбрасывается. После сброса первой ступени сила тяги двигателя должна сообщить ускорение меньшей массе, что приводит к значительному возрастанию скорости vв конце активного участка траектории по сравнению с одноступенчатой ракетой, имеющей ту же начальную массу.

Расчеты показывают, что уже при двух ступенях можно получить начальную скорость, достаточную для полёта головной части ракеты на межконтинентальные расстояния.

Идею применения многоступенчатых ракет для получения больших начальных скоростей и, следовательно, больших дальностей полёта, выдвинул К.Э. Циолковский. Эту идею используют при создании межконтинентальных баллистических ракет и ракет-носителей для запуска космических объектов.

б) траектории управляемых снарядов.

Траектория ракеты – это линия, которую в пространстве описывает её центр тяжести. Управляемый снаряд – это беспилотный летательный аппарат, обладающий средствами управления, с помощью которых можно влиять на движение аппарата на всей траектории или на одном из участков полёта. Управление снарядом на траектории потребовалось для того, чтобы поразить цель, оставаясь на безопасном от неё расстоянии. Существуют два главных класса целей: подвижные и неподвижные. В свою очередь реактивный снаряд может запускаться с неподвижного стартового устройства или с подвижного (например, с самолёта). При неподвижных целях и стартовых устройствах данные, необходимые для поражения цели, получаются из известного относительного расположения места старта и цели. При этом траектория движения реактивного снаряда может быть заранее рассчитана, а снаряд снабжен устройствами, обеспечивающими его движение по определённой рассчитанной программе.

В других случаях относительное расположение места старта и цели непрерывно меняется. Для поражения цели в этих случаях необходимо иметь устройства, следящие за целью и непрерывно определяющие взаимное положение снаряда и цели. Сведения, получаемые от этих устройств, используются для управления движением снаряда. Управление должно обеспечивать движение ракеты к цели по наивыгоднейшей траектории.

Для того чтобы полностью охарактеризовать полёт ракеты, недостаточно знать только такие элементы её движения, как траектория, дальность, высота, скорость полёта и другие величины, характеризующие движение центра тяжести ракеты. Ракета может занимать в пространстве различные положения относительно своего центра тяжести.

Ракета представляет собой тело значительных размеров, состоящее из множества узлов и деталей, изготовленных с известной степенью точности. В процессе движения она испытывает различные возмущения, связанные с неспокойным состоянием атмосферы, неточностью работы силовой установки, различного рода помехи и т. п. Совокупность этих погрешностей, не предусмотренных расчётом, приводит к тому, что фактическое движение сильно отличается от идеального. Поэтому для эффективного управления ракетой необходимо устранить нежелательное влияние случайных возмущающих воздействий, или, как говорят, обеспечить устойчивость движения ракеты.

в) координаты, определяющие положение ракеты в пространстве.

Изучение разнообразных и сложных движений, совершаемых ракетой может быть значительно упрощено, если движение ракеты представить как сумму поступательного движения её центра тяжести и вращательного движения относительно центра тяжести. Примеры, приведенные выше, наглядно показывают, что для обеспечения устойчивости движения ракеты чрезвычайно важно иметь её устойчивость относительно центра тяжести, т. е. угловую стабилизацию ракеты. Вращение ракеты относительно центра тяжести можно представить как сумму вращательных движений относительно трёх перпендикулярных осей, имеющих определённую ориентацию в пространстве. На рис.№7 изображена идеальная оперенная ракета, летящая по рассчитанной траектории. Начало систем координат, относительно которой мы будем стабилизировать ракету, поместим в центр тяжести ракеты. Ось X направим по касательной к траектории в сторону движения ракеты. Ось Y проведём в плоскости траектории перпендикулярно к оси X, а ось

Угол поворота вокруг оси Z называют углом тангажа

Расчётная траектория баллистических ракет лежит в плоскости XOY, называемой плоскостью стрельбы, и определяется двумя координатами X и Y.

Вывод:

“В этой работе я много узнал о баллистике, баллистическом движении тел, о полёте ракет, нахождении их координат в пространстве”.

Список литературы

Касьянов В.А. - Физика 10 класс; Петров В.П. - Управление ракетами; Жаков А.М. -

Управление баллистическими ракетами и космическими объектами; Уманский С.П. - Космонавтика сегодня и завтра; Огарков Н.В. - Военный энциклопедический словарь.

Для подготовки данной применялись материалы сети Интернет из общего доступа



Научная работа по физике
на тему:
Баллистическое движение тел

Выполнили ученики 10 г класса

Вознесенский Дмитрий

Гаврилов Артём

Теоретическая часть

История возникновения баллистического движения

- В многочисленных войнах на протяжении всей истории человечества враждующие стороны, доказывая своё превосходство, использовали сначала камни, копья, и стрелы, а затем ядра, пули, снаряды, и бомбы.

- Успех сражения во многом определялся точностью попадания в цель.

- При этом точный бросок камня, поражение противника летящим копьём или стрелой фиксировались воином визуально. Это позволяло при соответствующей тренировке повторять свой успех в следующем сражении.

- Значительно возросшая с развитием техники скорость и дальность полёта снарядов и пуль сделали возможным дистанционные сражения. Однако навыка война, разрешающей способности его глаза было недостаточно для точного попадания в цель артиллерийской дуэли первым.

- Желание побеждать стимулировало появление баллистики (от греческого слова ballo-бросаю).

Баллистика как наука

Баллистика-наука о движении снарядов, мин, пуль, неуправляемых ракет при стрельбе (пуске). Основные разделы баллистики: внутренняя баллистика и внешняя баллистика. Исследованием реальных процессов, происходящих при горении пороха, движении снарядов, ракет (или их моделей) и т. д., занимается эксперимент баллистики. Внешняя баллистика изучает движение снарядов, мин, пуль, неуправляемых ракет и др. после прекращения их силового взаимодействия со стволом оружия (пусковой установкой), а также факторы, влияющие на это движение. Основные разделы внешней баллистики: изучение сил и моментов, действующих на снаряд в полёте; изучение движения центра масс снаряда для расчета элементов траектории, а также движение снаряда относит. Центра масс с целью определения его устойчивости и характеристик рассеивания. Разделами внешней баллистики являются также теория поправок, разработка методов получения данных для составления таблиц стрельбы и внешнебаллистическое проектирование. Движение снарядов в особых случаях изучается специальными разделами внешней баллистики, авиационной баллистикой, подводной баллистикой и др

Основные термины баллистики

- Внешняя баллистика

- Внутренняя баллистика

- Баллистическая гибкость оружия

- Баллистическая ракета

- Баллистическая трасса

- Баллистические условия стрельбы

- Баллистические характеристики

- Баллистический вычислитель

- Баллистический спуск

- Баллистическое подобие

- Баллистический коэффициент

- Баллистическая фотокамера

Закон всемирного тяготения

- Баллистическое движение – движение за счёт силы тяжести при котором тело движется с учётом сил сопротивления с ускорением. А законы движения изучал Исаак Ньютон.

Исаак Ньютон

Открытие закона И.Ньютоном

На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения (см. Законы механики Ньютона ), он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.

Из закона

Результаты ньютоновских расчетов теперь называют законом всемирного тяготения Ньютона. Согласно этому закону между любой парой тел во Вселенной действует сила взаимного притяжения. Как и все физические законы, он облечен в форму математического уравнения. Если M и m - массы двух тел, а D - расстояние между ними, тогда сила F взаимного гравитационного притяжения между ними равна:

- F = GMm/D2

- где G - гравитационная константа, определяемая экспериментально. В единицах СИ ее значение составляет приблизительно 6,67 × 10–11.

Генри Кавендиш

Опыт Г.Кавендиша

Установление Ньютоном закона всемирного тяготения явилось важнейшим событием в истории физики . Его значение определяется прежде всего универсальностью гравитационного взаимодействия. На законе всемирного тяготения основывается один из центральных разделов астрономии - небесная механика. Мы ощущаем силу притяжения к Земле, однако притяжение малых тел друг к другу неощутимо. Требовалось экспериментально доказать справедливость закона всемирного тяготения и для обычных тел. Именно это и сделал Г.Кавендиш, попутно определив среднюю плотность Земли.

Опыт:

Практическая часть

Применение баллистики на практике

С увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается.

Другой случай:

- с увеличением начальной скорости вылета снаряда, при одинаковом угле вылета, дальность и высота полёта снаряда увеличиваются

Вывод:

- С увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается, а с увеличением начальной скорости вылета снаряда, при одинаковом угле вылета, дальность и высота полёта снаряда увеличиваются

Траектория баллистической ракеты

Траектория управляемых снарядов

Координаты, определяющие положение ракеты в пространстве

Невесомость

- Невесо́мость - состояние, наблюдаемое нами, когда сила взаимодействия тела с опорой (вес тела ), возникающая в связи с гравитационным притяжением, действием других массовых сил, в частности силы инерции, возникающей при ускоренном движении тела, отсутствует

Перегрузка

- Перегрузка-увеличение веса тела, вызванное ускоренным движением опоры или подвеса

- Баллистические ракеты подводных лодок (БРПЛ) - баллистические ракеты , размещаемые на подводных лодках .

РБПЛ СССР\России

РБПЛ США

РС-18, межконтинентальная баллистическая ракета

- Ракета РС-18 - одна из наиболее совершенных межконтинентальных баллистических ракет России. Ее создание началось в 1967 году в конструкторском бюро МПО Машиностроения, расположенном в подмосковном Реутове.

- Принята на вооружение 17 декабря 1980 года. Под эту ракету создавалась шахтная пусковая установка повышенной защищенности, а также новый комплекс средств преодоления противоракетной обороны. В январе 1981 года первые полки с УР-100Н УТТХ заступили на боевое дежурство. Всего было поставлено на боевое дежурство 360 шахтных пусковых установок РС-18.

Калибр - диаметр канала ствола огнестрельного оружия, а также диаметр снаряда (пули), это одна из основных величин, определяющих мощь огнестрельного оружия.

Калибр определяется у гладкоствольного оружия по внутреннему диаметру ствола, у нарезного - по расстоянию между противоположными полями нарезов, у снарядов (пуль) - наибольшим поперечным сечением. Орудия с коническим стволом характеризуются входным и выходным калибрами.

Калибр охотничьего ружья принято измерять не в миллиметрах, а количеством сферических пуль, которые можно отлить для данного ружья из одного английского фунта свинца, который равен 456 граммам. Поэтому чем меньше цифровое обозначение калибра ружья, тем больше его калибр в миллиметровой системе.

Исходя из определения, что такое калибр у охотничьего гладкоствольного ружья, т.е. что номинальным калибром называется число круглых (шаровых) пуль, отливаемых из одного фунта (в английских мерах веса) чистого свинца, точно соответствующих отверстию ствольной трубки, то нормальный вес дробового снаряда по калибру определится из формулы: C = 454/K (г), где С — вес снаряда в граммах, 454 (точнее — 453,6 г) — весовой эквивалент одного английского фунта чистого свинца в граммах и К — калибр ружья в номинале (10, 12, 16, 20 и т.д.).

Из приводимой формулы нормальный вес снаряда по диаметру канала ствола для 24 калибра составит: C = 454/24 = 18,9 (г), или округленно 19 г. Допустимы отклонения веса снаряда, определенного по формуле, на +1,0 г. Учитывая, однако, что ружья делают значительно более легкими, чем это требуется по весу нормального снаряда по калибру, необходимо проверить вес снаряда по весу ружья в целом. Из практики установлено, что при средних начальных скоростях снаряда от 350 до 375 м/сек отдача будет терпима в том случае, если вес снаряда окажется в пределах: для 12 калибра — от 1/100 до 1/94 общего веса ружья, для 16 калибра — 1/100, для 20 калибра — 1/112, для 24 калибра — 1/122, для 28 калибра — 1/136 и для 32 калибра — 1/148 общего веса ружья. Таким образом, при весе ружья 24 калибра в 2,5 кг вес снаряда составит 20,5 г. Из этого видно, что вес данного ружья соответствует его калибру. В выпуске отечественных ружей чаше всего получается, что вес.ружья значительно превышает то, что должно быть по его калибру, и вес снаряда, определенный по весу ружья, будет значительно больше, чем тот, который был определен по калибру круглой пули’. В этом случае следует применять нормальный вес снаряда, полученный по калибру ружья, а не по его весу. Если же вес снаряда, определенный по весу ружья, будет меньше, чем определенный по калибру, то в этом случае следует остановиться на снаряде, найденном из веса ружья. Иначе говоря, во всех случаях берут тот вес снаряда, который окажется меньшим.

В заключение следует отметить, что, произведя для данного ружья указанный расчет и проверку, останавливаются на полученном весе снаряда на все время его существования у данного охотника. Все желаемые изменения в бое ружья достигаются только за счет изменения веса пороха и способа снаряжения патронов.

Калибр нарезного стрелкового оружия

Калибр нарезного стрелкового оружия обозначается в США, Великобритании и ряде других стран в долях дюйма (.308 Winchester; в США - в сотых (0,45 дюйма), в Великобритании - в тысячных (0,450 дюйма). При написании ноль и запятая заменяются на точку, а «кал.» используется вместо «дюйм» или вообще опускается (.45 кал.; .450 кал.) В разговорной речи произносят: «сорок пятый калибр», «четыреста пятидесятый калибр».

В других странах измеряется в миллиметрах - 9?18 (первое число - калибр, второе - длина гильзы в миллиметрах). Здесь нужно учитывать, что длина гильзы является не характеристикой калибра, а характеристикой патрона. При одном и том же калибре патроны могут быть разной длины. Нужно иметь также в виду, что подобная «цифровая» запись используется в основном для армейских патронов на Западе. Для гражданских патронов к калибру обычно прибавляют название фирмы или модели оружия, например сорок пятый Кольт, тридцать восьмой Магнум. Встречаются и более сложные обозначения, например, девять миллиметров Браунинг короткий, он же трёхсот восьмидесятый авто. Приведенное описание обусловлено тем, что практически каждая оружейная фирма имеет свои запатентованные патроны разных характеристик. В России (ранее в СССР) номенклатура патронов унифицирована, поэтому повсеместно используется: 9 мм, 7,62 мм, 5,45 мм, 5,6 мм.

В России до 1917 г. и ряде других стран калибр измерялся в линиях. Одна линия = 0,1 дюйма = 2,54 мм. В современной лексике укоренилось название «трёхлинейка», что буквально означает «винтовка системы Мосина с калибром три линии».

В одних странах калибром считается расстояние между полями нарезов (наименьший диаметр канала ствола), в других - расстояние между доньями нарезов (наибольший диаметр). В итоге, при одинаковых обозначениях калибра диаметры пули и каналов ствола разные. Примером служат 9?18 Макаров и 9?19 Парабеллум.

У Макарова 9 мм - расстояние между полями, диаметр пули - 9,25 мм.

У Парабеллума расстояние между доньями - 9 мм, соответственно диаметр пули 9 мм, а расстояние между полями - 8,8 мм.

Согласованная картечь

Расчет диаметра согласованной картечи рассчитывается по следующей формуле:

Диаметр картечи = n * диаметр канала ствола у дульного среза.

n – константа зависящая от количества картечин в слое.

Если картечины 3 – n = 0,46;

При 7 картечинах в слое формула приобретает вид:

Диаметр картечи = диаметр канала ствола у дульного среза / 3.

N = (21*P) / R3, где:

N – количество дробин

Р – вес снаряда в граммах

R – радиус дробины в мм

Универсальная формула для расчета диаметра канала ствола:

3–(76500/К), где:

К – калибр выраженный в круглых пулях.

Формулы, которые могут понадобится при выборе ружья

1. Показатель баланса.

Под балансом ружья принято подразумевать расположение центра его тяжести относительно казенного среза стволов, когда ружье собрано и стволы закрыты. Хорошо сбалансированное ружье имеет центр тяжести расположенный в 40-45 мм от казенного среза, крупносерийные — 65, 75 мм.

Сама формула: Пб = Вр / Вс, где:

Вр — общая масса ружья.

Вс- масса стволов без цевья.

Показатель баланса должен находится в пределе:

от 2 до 2,3 — для двуствольных гладкоствольных охотничьих ружей

от 1,8 до 1,96 — для трехствольных комбинированных охотничьих ружей

от 1,75 до 1,8 — для двуствольных нарезных охотничьих штуцеров, винтовок и карабинов

2. Коэффициент посадистости

Посадистостью ружья называют его поворотливость, или удобоуправляемость. Она зависит от правильного распределения массы ружья по основным узлам (ствола с цевьем и ствольной коробки с прикладом), а в самих узлах от распределения массы ближе к центру тяжести всего ружья, а не к его концам.

Кп = Вк.п. / (Вс+Вц), где:

Вк.п. — масса ствольной коробки с прикладом

Вс — масса стволов

Вц — масса цевья.

У ружей отличного качества Кп равен 1, у ружей с легкими стволами больше 1, с тяжелыми — меньше 1.

При покупке ружья следует учитывать, что его масса должна составлять определенную часть массы стрелка:

до 1/21 от 50-55 кг;

до 1/22 от 60-65 кг;

до 1/23 от 70-75 кг;

до 1/24 от 80-85 кг;

до 1/25 от 90-95 кг;

до 1/26 от 100 кг и выше

При увеличении массы ружья стрелок, как правило, будет уставать.

Формулы, которые могут потребоваться при пристрелке ружья

1. Снарядное соотношение.

А) от веса ружья Вес снаряда = вес ружья / снарядный коэффициент

Снарядный коэффициент для 12 калибра находится в пределах от 94 до 100

Например для ружья массой 3,4 кг минимальный вес снаряда составит 34 гр (3400/100), максимальный – 36,2 (3400/94) гр.

Б) вес снаряда по калибру. Как известно калибр гладкоствольного оружия – это количество круглых пуль, которые можно изготовить из 1 фунта свинца. Таким образом вес снаряда будет равен результату деления массы фунта на калибр. При этом – 1 английский фунт = 453,592 г, 1 Троицкий фунт = 373,241 г, 1 французский фунт = 489,5 г, один русский фунт – 409,512 г. В принципе эталоном был английский фунт, но привожу все виды, так как циферки интересные получаются при расчетах. При этом среднее арифметическое веса снаряда по всем видам фунта для 12 калибра составляет 35,95 г.

2. Зарядное соотношение.

Вес заряда бездымного пороха определяется по формуле

П = Д * Б, где:

П – заряд пороха в г.

Д – Снаряд дроби в г

Б – Баллистический коэффициент составляющий для зимы – 0,056; для лета – 0,054

Вес заряда = вес снаряда / зарядный коэффициент

Среднее значение зарядного коэффициента для 12 калибра составляет для бездымного пороха – 16; для дымного – 5,5.

Сильный капсюль может дать увеличение давления Р до 100 кгс/см2 (до 9810х104 Па) и более.

Увеличение заряда бездымного пороха на 0,05 г приводит к увеличению давления Р до 15-17 кгс/см2 (до 147,2х104 — 166,8х104 Па)

С увеличением массы снаряда на 1 г приводит к увеличению давления Р до 5,5-15 кгс/см2.

Дымный порох горит при температуре 2200-2300 градусов Цельсия, бездымный — 2400 градусов.

При сгорании 1 кг дымного пороха образуется 300 литров газообразных продуктов, 1 кг бездымного — 900 литров.

Нагрев газа на каждые 273 градуса Цельсия увеличивает его объем и упругость на 100 %

С увеличением длинны ствола на каждые 100 мм увеличение начальной скорости снаряда составляет в среднем 7-8 м/с, тот же прирост в скорости достигается добавлением 0.05 г бездымного пороха.

Пороховые газы действуют на снаряд после вылета из ствола еще на дистанции в 25 калибров от дульного среза, и дают прирост в начальной скорости в среднем на 2,5 %

С увеличением массы снаряда на 1 г начальная скорость уменьшается на 3,3 м/с.

Для пристрелки нарезного оружия: Бой винтовки проверяют 3, 4, 5 или 10 патронами. После заранее установленного количества выстрелов определяют среднюю точку попадания и отклонения ее от точки прицеливания по вертикали и горизонтали. Затем определяют диаметр круга, вмещающего все пробоины от пуль или на одну меньше, если она дала явный отрыв в сторону. Величины отклонений средней точки попадания пуль по вертикали и горизонтали от точки прицеливания покажут, на сколько нужно переместить по высоте или в боковом направлении мушку или целик.

Кроме величины отклонений средней точки попадания от точки прицеливания, нужно еще знать длину прицельной линии данного ружья и дистанцию стрельбы.

Величину х перемещения мушки или целика определяют по формуле:

Х = (Пл * Ов [или Ог]) / Д, где:

Д – дистанция стрельбы, мм

Пл – длина прицельной линии, мм

Ов (или Ог) – отклонения средней точки попадания от точки прицеливания соответственно по вертикали Ов и горизонтали Ог

Допустим, что длина прицельной линии Пл равна 500 мм, дистанция стрельбы 50 000 мм (50 м) и отклонение средней точки попаданий по высоте выше точки прицеливания на 120 мм. Тогда величина поправки мушки:

Х = 500 * 120 / 50 000 = 1,2 мм.

Еще раз о баллистике

При стрельбе в безвоздушном пространстве наибольшая горизонтальная дальность полета снаряда соответствует углу бросания 45 градусов. Угол бросания, соответствующий максимальной дальности полета снаряда, в баллистике принято называть углом наибольшей дальности.

В действительности угол наибольшей дальности никогда не бывает 45њ, а в зависимости от массы и формы снаряда колеблется от 28 до 43 градусов. Для современного нарезного оружия угол наибольшей дальности равен 35 градусов, для дробового — 30-32 градусов.

Максимальная дальность полета дроби приблизительно равна такому числу сотен метров, какое число целых миллиметров имеет диаметр отдельной дробины, выстеленной с максимальной начальной скоростью 375-400 м/с.

С повышением температуры ружье «высит», с понижением «низит». Нормальной температурой считается 15 градусов С.

С уменьшением барометрического давления снаряд летит дальше и попадает выше, а с возрастанием — наоборот.

С увеличением (или уменьшением) температуры на каждые 10 градусов. Начальная скорость дробового снаряда увеличивается (или убывает) на 7 м/с.

Воображаемая линия, описываемая в пространстве центром тяжести двигающегося снаряда, называется траекторией (рис. 34). Образуется она под действием следующих сил: инерции, силы тяжести, силы сопротивления воздуха и силы, возникающей от разрежения воздуха за снарядом.

Когда на снаряд одновременно действуют несколько сил, то каждая из них сообщает ему определенное движение и положение снаряда по истечении некоторого отрезка времени определяется по правилу сложения движений, имеющих различное направление. Чтобы понять, как образуется траектория полета снаряда в пространстве, нужно рассмотреть каждую из действующих на снаряд сил в отдельности.

В баллистике принято рассматривать траекторию над (или под) горизонтом оружия. Горизонтом оружия называется воображаемая бесконечная горизонтальная плоскость, распространяющаяся во все стороны и проходящая через точку вылета. Точкой вылета называется центр дульного среза ствола. След от проходящей горизонтальной плоскости изображается в виде горизонтальной линии.

Если допустить, что на снаряд после его вылета из канала ствола не действуют никакие силы, то снаряд, двигаясь по инерции, будет лететь в пространстве бесконечно, прямолинейно по направлению оси канала ствола и равномерно. Если же на него после вылета из канала ствола будет действовать только одна сила тяжести, то в этом случае он начнет падать строго вертикально вниз по направлению к центру Земли, подчиняясь законам свободного падения тел.

Карпов Ярослав Александрович, Баккасов Дамир Рафаилевич

Актуальность темы : Баллистика - важная и древняя наука, она применяется в военном деле и в криминалистике.

Область исследования – механика.

Предмет исследования – тела, проходящих часть пути как свободно брошенное тело.

Цели: изучить закономерности, характерные для баллистического движения и проверить их выполнение с помощью лабораторной работы.

Задачи данной работы:

1. Изучение дополнительного материала по механике.

2. Знакомство с историей и видами баллистики.

3. Провести лабораторную работу по исследованию закономерностей баллистического движения.

Методы исследования: сбор информации, анализ, обобщение, изучение теоретического материала, проведение лабораторной работы.

В теоретической части работы рассматриваются основные теоретические сведения по баллистическому движению.

В исследовательской части приведены результаты лабораторной работы.

Скачать:

Предварительный просмотр:

Карпов Ярослав Александрович, Баккасов Дамир Рафаилевич 9 класс «А» ГБОУ СОШ № 351

ВОУО ДО г. Москвы

Научный руководитель: Кучербаева О.Г.

«Исследование баллистического движения с помощью цифровой лаборатории «Архимед»

Аннотация.

Актуальность темы : Баллистика - важная и древняя наука, она применяется в военном деле и в криминалистике.

Область исследования - механика.

Предмет исследования - тела, проходящих часть пути как свободно брошенное тело.

Цели: изучить закономерности, характерные для баллистического движения и проверить их выполнение с помощью лабораторной работы.

Задачи данной работы:

Изучение дополнительного материала по механике.

Знакомство с историей и видами баллистики.

Провести лабораторную работу по исследованию закономерностей баллистического движения.

Методы исследования: сбор информации, анализ, обобщение, изучение теоретического материала, проведение лабораторной работы.

В теоретической части работы рассматриваются основные теоретические сведения по баллистическому движению.

В исследовательской части приведены результаты лабораторной работы.

Цель опытов:

1) Установить с помощью баллистического пистолета, при каком угле вылета дальность полета снаряда наибольшая.

2) Выяснить при каких углах вылета дальность полета приблизительно одинаковая

3) Заснять видеоролик с движением тела под углом к горизонту и с помощью цифровой лаборатории «Архимед» проанализировать полученные траектории движения.

При стрельбе на горизонтальной поверхности под различными углами к горизонту дальность полета снаряда выражается формулой

ℓ = (2V²cosα sinα)/g

или

ℓ = (V²sin(2α))/g

Из данной формулы следует, что при изменении угла вылета снаряда от 90 до 0° дальность полет его падения сначала увеличивается от нуля до некоторого максимального значения, а затем снова уменьшается до нуля дальность падения максимальна когда произведения cosα и sinα наибольшее. Эту зависимость в данной работе мы решили проверить на опыте с помощью баллистического пистолета.

Мы установили пистолет под различными углами: 20, 30, 40, 45, 60 и 70° и сделали по 3 выстрела под каждым углом. Полученные результаты смотрите в таблице.

Угол полёта

20º

30º

40º

45º

60º

70º

Дальность полёта

«снаряда»

ℓ, м

1,62

1,90

2,00

2,10

1,61

1,25

1,54

1,90

2,00

1,05

1,55

1,20

1,54

1,86

1,95

1,12

1,55

1,30

Средняя дальность полёта

ℓ ср , м

1,55

1,88

1,98

1,08

1,56

1,25

Из таблице мы видим, что дальность полета снаряда при угле вылета 45° максимальна. Это подтверждается формулой. Когда произведения косинуса угла и синуса угла наибольшее. Так же из таблице видно,что дальность полета при углах 20° и 70°, а также 30° и 60° равны. Это подтверждается той же формулой. Когда произведение косинусов углов и синусов углов равны.

o видеосъемка короткого фильма, демонстрирующего плоское движение (движение тела, брошенного под углом к горизонту).

o Перевод отснятого цифровой видеокамерой материала в формат QuickTime на компьютере фирмы Apple с помощью программы iMovie или на компьютере PC с помощью программы QuickTime Pro. Особенность этих программ - они позволяют управлять параметрами выходного файла.

o Обработка полученного видеофайла в программе Multilab, собственно, оцифровка траектории, а затем математическая обработка графиков.

3.Заключение

Баллистика - важная и древняя наука, она применяется в военном деле и в криминалистике. С помощью проведенного нами опыта мы подтвердили определенную зависимость между углом вылета и дальностью полета снаряда. Также хотелось бы отметить, что изучая баллистику, мы видим тесную связь двух наук: физики и математики

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Окружная НПК «Дети-творцы XXI века» Физика «Исследование баллистического движения» Авторы: Карпов Ярослав Александрович Баккасов Дамир Рафаилевич ГБОУ СОШ №351, 9 «А» класс Научный руководитель: учитель физики Кучербаева Ольга Геннадиевна Москва, 2011 г.

Введение Баллистика - важная и древняя наука, она применяется в военном деле и в криминалистике. Вместе с этим, она интересна с точки зрения связи предметов: математики и физики.

Цели изучить закономерности, характерные для баллистического движения проверить их выполнение с помощью лабораторной работы.

Задачи данной работы Изучение дополнительного материала по механике. Знакомство с историей и видами баллистики. Провести лабораторную работу по исследованию закономерностей баллистического движения при помощи баллистического пистолета и с применением цифровой лаборатории «Архимед»

История возникновения баллистики Возникновение баллистики как науки относится к 16 в. Первыми трудами по баллистики являются книги итальянца Н. Тартальи «Новая наука» (1537) и «Вопросы и открытия, относящиеся к артиллерийской стрельбе» (1546). В 17 в. фундаментальные принципы внешней баллистики были установлены Г. Галилеем, разработавшим параболическую теорию движения снарядов, итальянцем Э. Торричелли и французом М. Мерсенном, который предложил назвать науку о движении снарядов баллистикой (1644). И. Ньютон провёл первые исследования о движении снаряда с учётом сопротивления воздуха - «Математические начала натуральной философии» (1687). В 17-18 вв. исследованием движения снарядов занимались: голландец Х. Гюйгенс, француз П. Вариньон, швейцарец Д. Бернулли, англичанин Робинс, русский учёный Л. Эйлер и др. Экспериментальные и теоретические основы внутренней баллистики заложены в 18 в. в трудах Робинса, Ч. Хеттона, Бернулли и др. В 19 в. были установлены законы сопротивления воздуха (законы Н. В. Маиевского, Н. А. Забудского, Гаврский закон, закон А. Ф. Сиаччи). В начале 20 в. дано точное решение основной задачи внутренней баллистики - работы Н. Ф. Дроздова (1903, 1910), исследовались вопросы горения пороха в неизменном объёме - работы И. П.Граве (1904) и давления пороховых газов в канале ствола - работы Н. А. Забудского (1904, 1914), а также француза П. Шарбонье и итальянца Д. Бианки.. Как самостоятельная, определённая область науки, баллистика получила широкое развитие с середины XlX века.

Баллистика в СССР В СССР большой вклад в дальнейшее развитие баллистики внесён учёными Комиссии особых артиллерийских опытов (КОСЛРТОП) в 1918-26. В этот период В. М. Трофимовым, А. Н. Крыловым, Д. А. Вентцелем, В. В. Мечниковым, Г. В. Оппоковым, Н. Окуневым и др. выполнен ряд работ по совершенствованию методов расчёта траектории, разработке теории поправок и по изучению вращательного движения снаряда. Исследования Н. Е. Жуковского и С. А. Чаплыгина по аэродинамике артиллерийских снарядов легли в основу работ Е. А. Беркалова и др. по совершенствованию формы снарядов и увеличению дальности их полёта. В. С. Пугачев впервые решил общую задачу о движении артиллерийского снаряда.

Основные разделы баллистики «БАЛЛИСТИКА - наука о законах полёта тел (снарядов, мин, бомб, пуль), проходящих часть пути как свободно брошенное тело» - пишут в словаре Ожегова. Баллистику подразделяют на: внутреннюю и внешнюю, а так же «терминальную» (конечную) баллистики. Внешняя баллистика изучает движение снарядов, мин, пуль, неуправляемых ракет и др. после прекращения их силового взаимодействия со стволом оружия (пусковой установкой), а также факторы, влияющие на это движение. Внутренняя баллистика изучает движение снарядов, мин, пуль и др. в канале ствола оружия под действием пороховых газов, а также другие процессы, происходящие при выстреле в канале или камере пороховой ракеты. «Терминальная» (конечная) баллистика, имеет отношение к взаимодействию снаряда и тела, в которое он попадает, и движению снаряда после попадания, то есть рассматривает физику разрушающего действия оружия на поражаемые цели, в том числе явления взрыва. Терминальной баллистикой занимаются оружейники-специалисты по снарядам и пулям, прочнисты и других специалисты по броне и защите, а также криминалисты. Для имитации действия осколков и пуль, поражающих человека, производят выстрелы в массивные мишени из желатина. Подобные эксперименты относятся к т.н. раневой баллистике. Их результаты позволяют судить о характере ран, которые может получить человек. Информация, которую дают исследования по раневой баллистике, дает возможность оптимизировать эффективность разных видов оружия, предназначающегося для уничтожения живой силы противника.

Понятие криминалистической баллистики Криминалистическая баллистика - отрасль криминалистической техники, изучающая закономерности возникновения следов преступления, событие которых связано с применением огнестрельного оружия. Объектами баллистических исследований являются: 1. Следы, возникающие на деталях оружия, гильзах и пулях, образовавшиеся в результате выстрела. 2. Следы, возникающие на преграде при попадании в нее снаряда. 3. Огнестрельное оружие и его части. 4. Боеприпасы и их части. 5. Взрывные устройства. 6. Холодное оружие.

Скорость при баллистическом движении Для расчёта скорости v снаряда произвольной точке траектории, а также для определения угла α, который образует вектор скорости с горизонталью, достаточно знать проекции скорости на оси X и Y. Если vХ и v Y известны, по теореме Пифагора можно найти скорость: v = √ vХ ²+ v Y ². При равномерном движении по оси X проекция скорости движения vХ остаётся неизменной и равной проекции начальной скорости v: v = v cos α. Зависимость v (t) определяется формулой: v = v + a t. в которую следует подставить: v = v sinα , a = -g.

Тогда v = v sin - gt . В любой точке траектории проекция скорости на ось X остается постоянной. По мере подъема снаряда проекция скорости на ось У уменьшается по линейному закону. При t = 0 она равна = sin а. Найдем промежуток времени, через который проекция этой скорости станет равна нулю: 0 = v sin - gt , t = Полученный результат совпадает со временем подъема снаряда на максимальную высоту. В верхней точке траектории вертикальная компонента скорости равна нулю. Следовательно, тело больше не поднимается. При t> проекция скорости v становится от­рицательной. Значит, эта составляющая скорости направлена противоположно оси Y, т. е. тело на­чинает падать вниз. Так как в верхней точке траектории v = 0, то скорость снаряда равна: v = v = v cosα

Журнал исследования Цель опытов: 1) Установить при каком угле вылета дальность полета снаряда наибольшая. 2) Выяснить при каких углах вылета дальность полета приблизительно одинаковая 3) Проверить данные с помощью цифровой лаборатории «Архимед»

При стрельбе на горизонтальной поверхности под различными углами к горизонту дальность полета снаряда выражается формулой ℓ = (2V²cosα sinα)/g Или ℓ = (V²sin(2α))/g Из данной формулы следует, что при изменении угла вылета снаряда от 90 до 0° дальность полет его падения сначала увеличивается от нуля до некоторого максимального значения, а затем снова уменьшается до нуля дальность падения максимальна когда произведения cosα и sinα наибольшее. Эту зависимость в данной работе мы решили проверить на опыте с помощью баллистического пистолета

Мы установили пистолет под различными углами: 20, 30, 40, 45, 60 и 70° и сделали по 3 выстрела под каждым углом. Угол полёта 20º 30º 40º 45º 60º 70º Дальность полёта «снаряда» ℓ , м 1,62 1,90 2,00 2,10 1,61 1,25 1,54 1,90 2,00 2,05 1,55 1,20 1,54 1,86 1,95 2,12 1,55 1,30 Средняя дальность полёта ℓ ср, м 1,55 1,88 1,98 2,08 1,56 1,25 Из таблицы мы видим, что дальность полета снаряда при угле вылета 45° максимальна. Это подтверждается формулой. Когда произведения косинуса угла и синуса угла наибольшее. Так же из таблице видно,что дальность полета при углах 20° и 70°, а также 30° и 60° равны. Это подтверждается той же формулой. Когда произведение косинусов углов и синусов углов равны

Траектория баллистической ракеты Наиболее существенной чертой, отличающей баллистические ракеты от ракет других классов, является характер их траектории. Траектория баллистической ракеты состоит из двух участков – активного и пассивного. На активном участке ракета движется с ускорением под действием силы тяги двигателей. При этом ракета запасает кинетическую энергию. В конце активного участка траектории, когда ракета приобретёт скорость, имеющую заданную величину и направление, двигательная установка выключается. После этого головная часть ракеты отделяется от её корпуса и дальше летит за счёт запасённой кинетической энергии. Второй участок траектории (после выключения двигателя) называют участком свободного полёта ракеты, или пассивным участком траектории. Баллистические ракеты стартуют с пусковых установок вертикально вверх. Вертикальный пуск позволяет построить наиболее простые пусковые установки и обеспечивает благоприятные условия управления ракетой сразу же после старта. Кроме того, вертикальный пуск позволяет снизить требования к жёсткости корпуса ракеты и, следовательно, уменьшить вес её конструкции. Управление ракетой осуществляется так, что через несколько секунд после старта она, продолжая подъём вверх, начинает постепенно наклоняться в сторону цели, описывая в пространстве дугу. Угол между продольной осью ракеты и горизонтом (угол тангажа) изменяется при этом на 90º до расчетного конечного значения. Требуемый закон изменения (программа) угла тангажа задается программным механизмом, входящим в бортовую аппаратуру ракеты. На завершающем отрезке активного участка траектории угол тангажа выдерживается, постоянный и ракета летит прямолинейно, а когда скорость достигает расчетной величины - двигательную установку выключают. Кроме величины скорости, на завершающем отрезке активного участка траектории устанавливают с высокой степенью точности также и заданное направление полёта ракеты (направление вектора её скорости). Скорость движения в конце активного участка траектории достигает значительных величин, но ракета набирает эту скорость постепенно. Пока ракета находится в плотных слоях атмосферы, скорость её мала, что позволяет снизить потери энергии на преодоление сопротивления среды.

Момент выключения двигательной установки разделяет траекторию баллистической ракеты на активный и пассивный участки. Поэтому точку траектории, в которой выключаются двигатели, называют граничной точкой. В этой точке управление ракетой обычно заканчивается и весь дальнейший путь к цели она совершает в свободном движении. Дальность полёта баллистических ракет вдоль поверхности Земли, соответствующая активному участку траектории, равна не более чем 4-10% общей дальности. Основную часть траектории баллистических ракет составляют участок свободного полёта. Для того чтобы полностью охарактеризовать полёт ракеты, недостаточно знать только такие элементы её движения, как траектория, дальность, высота, скорость полёта и другие величины, характеризующие движение центра тяжести ракеты. Ракета может занимать в пространстве различные положения относительно своего центра тяжести. В процессе движения ракета испытывает различные возмущения, связанные с неспокойным состоянием атмосферы, неточностью работы силовой установки, различного рода помехи и т. п. Совокупность этих погрешностей, не предусмотренных расчётом, приводит к тому, что фактическое движение сильно отличается от идеального. Поэтому для эффективного управления ракетой необходимо устранить нежелательное влияние случайных возмущающих воздействий, или, как говорят, обеспечить устойчивость движения ракеты.

Заключение Баллистика - важная и древняя наука, она применяется в военном деле и в криминалистике. С помощью проведенного нами опыта мы подтвердили определенную зависимость между углом вылета и дальностью полета снаряда. Также хотелось бы отметить, что изучая баллистику, мы видим тесную связь двух наук: физики и математики.

Список использованной литературы Е.И. Бутиков, А.С. Кондратьев, Физика для углубленного изучения, том 1.Механика. Г.И. Копылов, Всего лишь кинематика, Библиотечка "Квант", выпуск 11. М.: Наука, 1981 Физика. Учебник для 10 класса. Мякишев Г.Я., Буховцев Б.Б. (1982.)

СПАСИБО ЗА ВНИМАНИЕ



Читайте также: