“Эволюционное древо”. Основные этапы эволюции животных Древо эволюции

Учение Ч. Дарвина было дополнено трудами многих ученых. Благодаря их работе была доказана правильность важнейших положений теории эволюции. Это позволило определить основные этапы развития животного мира на Земле.

От одноклеточных животных к многоклеточным. Несомненно, первыми на Земле были древние простейшие. От них произошли современные одноклеточные: саркодовые, жгутиковые, инфузории, споровики. По своему строению они представляют одну клетку, в которой происходят все процессы жизнедеятельности целого живого организма. Из одноклеточных наиболее сложно устроены колониальные жгутиковые, например вольвокс. От древних колониальных жгутиковых, видимо, возникли очень похожие на современных кишечнополостных древние многоклеточные организмы, тело которых состояло из двух слоев клеток (наружных жгутиковых и внутренних пищеварительных).

Появление древних многоклеточных организмов было огромным событием в эволюции животных. У многоклеточных организмов в отличие от одноклеточных появились возможности для специализации клеток по выполняемым ими функциям. Одни клетки стали играть защитную роль, другие - обеспечивать пищеварение, сокращение, размножение, раздражение.

Многоклеточность и специализация клеток стали основой для формирования тканей, увеличения размеров тела, возникновения скелета, регенерации.

Усложнение строения многоклеточных организмов. Следующим этапом было происхождение от древних кишечнополостных трехслойных животных, похожих на современных свободноживущих ресничных червей. У них сформировались системы органов: пищеварительная, кровеносная, нервная, выделительная, система органов размножения. За счет третьего слоя клеток у плоских и круглых червей образуется мускулатура.

Следующим важным этапом в историческом развитии животного мира стало возникновение кольчатых червей. Возможно, от каких-то древних кольчатых червей произошли моллюски и членистоногие (рис. 227). Среди моллюсков и членистоногих появляются первые сухопутные животные. За счет формирования наружного хитинового скелета приспособления насекомых к жизни на суше стали более совершенными. Хитиновые покровы, которые служат скелетом и предохраняют организм от иссушения, позволили сформировать конечности и крылья. Насекомые широко расселились по Земле.

Рис. 227. Эволюционное древо современного животного мира

Наряду с общим прогрессивным развитием животные приспосабливаются к конкретным условиям. Так, представители семейств Жужелицы и Плавунцы - хищные жуки, но одни освоили наземную среду, а другие приспособились к жизни в воде.

Происхождение и эволюция хордовых. Предполагают, что древние хордовые произошли от вторичнополостных червеобразных предков, которые вели малоподвижный образ жизни. Хордовые приобрели прогрессивные черты: внутренний скелет, скелетную мускулатуру, хорошо развитую центральную нервную систему, имевшую вид нервной трубки, более совершенные органы чувств, системы органов пищеварения, дыхания, кровообращения, выделения и размножения.

Наиболее древние хордовые, видимо, были похожи на современных ланцетников. У них была хорда (первичный внутренний осевой скелет), над ней располагалась нервная трубка - центральная нервная система. Под хордой находился кишечник, передний отдел которого имел жаберные щели.

От древних бесчерепных произошли позвоночные. У них сформировалась более совершенная опорно-двигательная система (позвоночник, состоящий из позвонков). Развился череп, предохраняющий головной мозг. Из нервной трубки образовались головной и спинной мозг, усложнилось поведение. В кровеносной системе появилось сердце - мускульный орган, обеспечивающий движение крови по сосудам. Произошли изменения в органах движения. Из складок, расположенных по бокам туловища, развились парные конечности - плавники.

Так возникли первые водные позвоночные животные - рыбы. Широкое распространение рыбы получили в палеозое.

Выход позвоночных на сушу. Важное значение для происхождения наземных позвоночных животных имели древние кистеперые рыбы. Скелет их парных плавников напоминал скелет конечностей земноводных. Кистеперые рыбы опирались на хорошо развитые парные плавники при ползании по дну - на этих плавниках были мышцы. У них были зачатки легких, они могли дышать воздухом при пересыхании водоемов.

От древних кистеперых рыб произошли первые наземные позвоночные - земноводные.

Земноводные не утратили связь с водной средой и внешне были очень похожи на кистеперых рыб. Их конечности превратились в типичные для наземных позвоночных многочленные рычаги - пятипалые конечности. Усложнились легкие, возникло два круга кровообращения. Потомки древних земноводных - современные тритоны, саламандры, лягушки, жабы также тесно связаны с водой. Имея голую кожу, участвующую в дыхании, земноводные могут жить только во влажной среде, а размножение их происходит в водоемах.

В конце палеозоя климат на Земле стал более сухим. Позвоночные животные начали интенсивнее осваивать сушу. У части земноводных в коже стали формироваться роговые чешуи, защищающие тело от высыхания.

Ороговевшие покровы препятствовали дыханию, поэтому легкие оказались единственным органом дыхания. Животные приспособились к размножению на суше. Они стали откладывать яйца, богатые питательными веществами, водой и защищенные оболочками от высыхания. Так возникли пресмыкающиеся - типичные наземные позвоночные животные.

Расцвет пресмыкающихся. В мезозойскую эру рептилии освоили все среды жизни и широко расселились по Земле. Наиболее разнообразными были динозавры - травоядные и плотоядные. Одни небольшие, величиной с крысу, другие - гиганты длиной почти 30 м. Воздушную среду заселили летающие ящеры. К жизни в воде вторично приспособились ихтиозавры, крокодилы, черепахи. Появились ящерицы. Позднее от них произошли змеи.

Расцвет птиц и зверей. Древние пресмыкающиеся дали начало птицам и млекопитающим, которые приобрели важные преимущества перед рептилиями: постоянную температуру тела, развитый головной мозг, более совершенное размножение: у птиц - откладывание и насиживание яиц, выкармливание птенцов; у млекопитающих - вынашивание детенышей в утробе матери, живорождение и выкармливание молоком. Птицы и млекопитающие оказались лучше рептилий приспособлены к меняющимся условиям среды.

Уровни организации жизни. При изучении животных вы познакомились с клеточным уровнем организации жизни. Из одной клетки состоит организм простейших. У многоклеточных кишечнополостных появляются два слоя тела: эктодерма и энтодерма, клетки которых имеют разное строение. Из клеток разного типа состоят ткани высших животных - эпителиальная, мышечная, нервная и др.

Знакомясь с жизнедеятельностью животных, их поведением, вы имели дело с организменным уровнем организации жизни. При этом животные относятся к определенным видам. Сохранение вида возможно в том случае, если животные живут группами (популяциями), в которых они свободно скрещиваются и оставляют потомство. Группу животных одного вида, обитающих в определенных условиях, обладающих общими морфологическими, физиологическими, генетическими признаками, называют популяцией. Следовательно, это популяционно-видовой уровень организации жизни.

Естественно, популяции разных видов, населяющие одно и то же место обитания, входят в состав одного биоценоза. Это биоценотический уровень организации жизни. В любом биоценозе различаются три группы организмов: продуценты - производители органических веществ (растения), консументы - потребители органических веществ (растительноядные, хищные, всеядные животные) и редуценты - разрушители органических веществ (рис. 228). К ним относятся птицы и звери - падальщики, жуки-могильщики и дождевые черви. Эти животные, питающиеся трупами и отходами (отмершими частями растений, телами погибших животных и их экскрементами), а в большей степени бактерии и грибы, доводят до конца разложение органических веществ до минеральных, тем самым повышая плодородие почв и возвращая в природу взятые растениями минеральные вещества (рис. 229). Многообразие условий обитания, различие популяций, разнообразие биоценозов обеспечивают устойчивость природных экосистем разного уровня.

Рис. 228. Жуки-могильщики у трупа мыши

Человек, владеющий научной информацией о закономерностях строения и функционирования биологических систем, имеет возможность правильно и умело применять ее в практической деятельности. От понимания людьми законов функционирования биоценозов и сохранения их зависит благополучие природных экосистем и отдельных видов животных. Необходимо рационально использовать свои знания о животном мире, постоянно заботиться о его сохранении и восстановлении.

Рис. 229. Взаимосвязи продуцентов (1), консументов (2) и редуцентов (3)

Современный животный мир - результат длительного исторического развития органического мира. При этом развитие происходит в результате общего прогресса: появления многоклеточности, возникновения мезодермы, формирования наружного хитинового скелета, внутреннего скелета (хорды), трубчатой центральной нервной системы, теплокровности и др. Современный животный мир представляет собой совокупность живых систем разного уровня, активно взаимодействующих с окружающей средой.

Упражнения по пройденному материалу

  1. Назовите основные этапы развития животного мира на Земле.
  2. В чем особенность строения и жизнедеятельности одноклеточных животных?
  3. Какие приспособления в строении и деятельности появляются у многоклеточных животных в отличие от одноклеточных?
  4. Каково значение появления трехслойности в усложнении организации тела животных?
  5. Почему формирование наружного хитинового скелета способствовало приспособлению насекомых к жизни на суше и их расселению по Земле?
  6. Какие прогрессивные черты хордовых обеспечили их дальнейшую эволюцию?
  7. Назовите основные отличия позвоночных от их предков - бесчерепных в строении и функциях организма.
  8. Какие изменения в строении и функциях организма появились у древних земноводных в связи с изменением климата? К чему это привело?
  9. В чем преимущество в строении и жизнедеятельности птиц и млекопитающих перед рептилиями?
  10. Назовите основные этапы эволюции беспозвоночных и хордовых животных.

Австралийский палеонтолог Майкл Ли предложил новую гипотезу происхождения черепах. Как и многие авторы до него, Ли считает, что черепахи близки к крупным растительноядным ящерам пермской эпохи - парейазаврам ; но он предполагает, что черепахи вместе с парейазаврами произошли от диапсид - ветви рептилий, к которой относятся крокодилы, динозавры и ящерицы. Если эта гипотеза подтвердится, она будет означать очень сильную перестройку эволюционного древа рептилий, возможно, даже заслуживающую названия «новой филогении рептилий».

Черепахи появились на Земле примерно 220 миллионов лет назад, в конце триасового периода . Поздний триас - особая эпоха в истории наземных позвоночных. Именно тогда возникли млекопитающие, черепахи, крокодилы, динозавры и птерозавры (летающие ящеры) - пять групп животных, которые очень сильно изменили облик нашей планеты. Из всех этих групп именно происхождение черепах выглядит наиболее загадочным. И главная причина тут не недостаток усердия палеонтологов, а слишком необычная анатомия черепах, затрудняющая их сравнение с любыми другими позвоночными.

Какие вообще возможны «кандидаты» на роль предков черепах? Известно, что рептилии и их потомки делятся на три огромные группы: анапсиды , диапсиды и синапсиды . Главный признак, по которому эти группы выделены, это число височных дуг - костных мостиков в крыше черепа, разделенных отверстиями. У нас, например, височная дуга только одна (ее можно нащупать, проведя рукой назад от скулы), и это означает, что мы - синапсиды («слитнодужные»). К синапсидам относятся млекопитающие и вымершие зверообразные рептилии. Диапсидами («двудужными») называются животные, у которых височных дуг изначально было две; к ним относятся ящерицы, змеи, гаттерии, крокодилы, динозавры, птерозавры, а также птицы. И наконец, анапсиды («бездужные») - это те, у кого никаких височных дуг и отверстий нет вовсе. К ним относится несколько вымерших групп ящеров, например парейазавры и проколофоны .

К синапсидам черепах не относит никто. А вот отнести их к анапсидам было совершенно естественно, потому что никаких височных дуг и отверстий у черепах нет; у них встречается разве что височная вырезка (но не отверстие!). Действительно, еще в начале XX века сразу несколько палеонтологов пришли к выводу, что черепахи - это единственные дожившие до наших дней анапсиды. Их предками вполне могли бы быть, например, парейазавры, которые немного похожи на черепах даже формой тела (рис. 1).

В 1947 году американский палеонтолог Эверетт Олсон (Everett Olson) предложил выделить анапсид в подкласс парарептилий (Parareptilia), подчеркивая их отдельное от других рептилий происхождение. В этот подкласс он включил и черепах.

Но ведь есть еще диапсиды. По Олсону, они вошли в подкласс настоящих рептилий (Eureptilia). Проблема в том, что и с современными диапсидами черепахи тоже имеют ряд общих черт. Например, сердце у черепах и у ящериц устроено настолько похоже, что это еще в 1916 году привело крупного английского сравнительного анатома Эдвина Гудрича (Edwin Stephen Goodrich) к мысли об их близком родстве. В дальнейшем признаки, общие у черепах с диапсидами, были обнаружены в анатомии тазового пояса, стопы, верхней челюсти, позвоночника, затылка. А височные окна, в конце концов, могли в каких-то эволюционных линиях возникнуть повторно или, наоборот, зарасти. В результате к концу XX века гипотеза происхождения черепах от диапсид стала довольно популярной (см.: В. Р. Алифанов. Загадка происхождения черепах , «Природа», 2001, №8).

Выбор между двумя главными теориями происхождения черепах - анапсидной (парарептилийной) и диапсидной (эурептилийной) - не сделан до сих пор. Достаточно сильные сравнительно-анатомические доводы можно найти и за ту, и за другую. К счастью, есть еще и молекулярная филогенетика . Анализ последовательностей ДНК, охватывающий больше двух сотен генов, приводит к выводу, что ветвь черепах находится внутри диапсид (рис. 2).

Если верить, что последнее слово - всегда за молекулярной биологией, задачу можно на этом считать решенной. Но откуда же всё-таки столько противоречий в морфологических построениях? И как эти противоречия убрать?

Разобраться в этом, объединив по возможности все современные данные, решил австралийский палеонтолог Майкл Ли (Michael Lee). Он рассудил так: если решение задачи раз за разом не сходится - значит, нужно исследовать сам метод, которым мы ее решаем.

В наше время единственным общепринятым методом построения эволюционных деревьев является кладистический анализ (см. кладистика). В рамках этого метода вся эволюция рассматривается как набор дихотомических (надвое) ветвлений родословного древа, и задача сводится всего лишь к установлению порядка этих ветвлений. А он определяется по строгим алгоритмам, исходя из списков признаков, на которые обязательно разбиваются фенотипы животных. Во всех спорных случаях истинной считается та ветвь, у которой больше уникальных общих признаков.

Расчеты деревьев в кладистике уже давно выполняются автоматически, с помощью специальных программ. От этих программ зависит очень многое; ученые-филогенетики постоянно занимаются их усовершенствованием, комбинируя существующие подходы и предлагая новые.

Но даже из такого предельно краткого описания ясно, что в кладистическом анализе есть как минимум одна совершенно неизбежная операция, которая может быть выполнена только человеком. Это - составление списка признаков. Вид древа, которое выдает программа, всегда зависит от того, значения каких признаков в нее ввели.

А от чего зависит выбор признаков? В первую очередь - от того, какая группа животных находится в центре внимания данного исследователя. У ученых, специализирующихся на парарептилиях (анапсидах) и на настоящих рептилиях (диапсидах), при решении одной и той же проблемы - в данном случае проблемы происхождения черепах - получаются разные результаты в значительной степени потому, что они просто работают с разными признаками. Например, специалисты по анапсидам традиционно уделяют несколько больше внимания анатомии черепа, а специалисты по диапсидам - наоборот, анатомии конечностей и осевого скелета.

Черепах можно включить в древо, построенное изначально для парарептилий, а можно включить в древо, построенное изначально для диапсид. Результаты, конечно, в идеале должны быть одинаковыми, но на самом деле они будут разными. Майкл Ли решил специально проверить это. Сначала он с помощью соответствующих программ построил два типа родословных деревьев рептилий без черепах : «сфокусированное на диапсидах» (diapsid-focused) и «сфокусированное на анапсидах» (anapsid-focused), потом включил черепах в каждое из этих деревьев, а потом сопоставил результаты (рис. 3).

По-русски деревья первого типа удобно назвать «диапсидоцентрическими», второго - «анапсидоцентрическими»; громоздкие слова, но тут проще не скажешь. И тех, и других было построено по восемь штук, с применением разных вычислительных методик. При этом из восьми «диапсидоцентрических» деревьев на шести черепахи оказались внутри диапсид, и на двух - всё-таки внутри анапсид. А вот на «анапсидоцентрических» деревьях черепахи оказались внутри анапсид во всех случаях. Предпочтения в пользу диапсид там ни в одном варианте не выходит.

Итак, между «диапсидоцентрическими» и «анапсидоцентрическими» деревьями есть асимметрия. «Анапсидоцентрические» поддерживаются кладистическим анализом существенно надежнее. Просто группа животных попалась такая сложная, что без специального исследования это не видно.

Значит, черепахи - всё-таки анапсиды?

Но как же тогда быть с молекулярными данными, которые довольно однозначно помещают черепах среди диапсид?

Ли находит очень экстравагантный выход из этого противоречия. Он высказывает идею, что утверждения о происхождении черепах от диапсид и о близости их к парейазаврам и проколофонам (то есть к заведомым анапсидам) могут быть верны одновременно . Это означает, что парейазавры, проколофоны, а может быть, и другие парарептилии - тоже диапсиды, только потерявшие височные окна очень рано и быстро.

Имеет ли право на жизнь такая гипотеза, без преувеличения переворачивающая традиционное представление о родословном древе рептилий? Ли ссылается на недавние находки парарептилий, близких к проколофонам, у которых по крайней мере одно височное окно действительно обнаружено (см.: Modesto et al., 2009. A new parareptile with temporal fenestration from the Middle Permian of South Africa). Более того, совсем недавно была опубликована эволюционная реконструкция, согласно которой наличие хотя бы одного височного окна является примитивным состоянием для всех рептилий вообще (см.: Pineiro et al., 2012. Cranial morphology of the Early Permian mesosaurid Mesosaurus tenuidens and the evolution of the lower temporal fenestration reassessed). На таком фоне гипотеза Ли, фактически ликвидирующая группу анапсид, не выглядит совсем уж невероятной. И противоречие, касающееся положения черепах, она действительно снимает.

Майкл Ли известен как давний сторонник гипотезы происхождения черепах от парейазавров (см., например: Lee, 1997. Pareiasaur phylogeny and the origin of turtles). Новая радикальная версия этой гипотезы определенно служит ему «последним рубежом обороны». Так что его позицию вряд ли можно считать абсолютно объективной (а, впрочем, кто из ученых полностью объективен?). Но обоснование новой гипотезы Ли выглядит вполне разумно. Эта гипотеза, безусловно, требует проверки, но внимания она заслуживает - уже потому, что предлагает взглянуть на эволюцию давно и хорошо изученной группы животных с неожиданной стороны.

Если же Ли окажется прав, то и учебники зоологии в части, касающейся эволюции рептилий, придется переписать. Можно даже сказать, что здесь вырисовывается своего рода «новая филогения рептилий», по аналогии с уже широко известной «новой филогенией животных» (см.: Новые данные позволили уточнить родословную животного царства , «Элементы», 10.04.2008). Причем в данном случае молекулярная биология будет при проверке новой идеи почти бесполезна: все переходные группы вымерли настолько давно, что по ним невозможны никакие молекулярно-генетические исследования. Так что дело - за палеонтологами.

Царство грибов совмещает черты строения растений и животных, иначе говоря, это самостоятельное царство эукариотов – гетеротрофов.

Лишайники – симбиотические организмы, состоящие из двух компонентов: водоросль и гриб. Лишайники бывают накипные, листоватые и кустистые.

Царство растений включает низшие растения (водоросли) и высшие растения (все остальные группы).

Водоросли произошли от способных к фотосинтезу прокариотов, т.е. синезеленых водорослей (цианей). Одноклеточные эукариотические водоросли дали начало многоклеточным водорослям (бурые, красные, зеленые, золотистые). Многоклеточные водоросли дали начало псилофитам, а они, в свою очередь, мхам. Моховидные – это обособленная и тупиковая ветвь развития растения. От псилофитов произошли плауновидные, хвощевидные и папоротниковидные. От первичных разноспоровых папоротниковых возникли голосеменные. Представители современных голосеменных растений; гинкго, сосна, ель, пихта, лиственница, кедр, кипарис, можжевельник, гнетум, эфедра, саговник). Наиболее современная и многочисленная группа покрытосеменных эволюционировала параллельно голосеменным от общего с ним предка семенного папоротника. Представители покрытосеменных – это двудольные и однодольные.

Эволюционное древо животных

Царство животных подразделяют на два подцарства: одноклеточные и многоклеточные.

Одноклеточные организмы (эукариоты) произошли от гетеротрофных прокариотов. В современной фауне к ним относят корненожек, жгутиковых, споровиков, инфузорий.

Дальнейшее развитие происходит от примитивных турбеллярий с образованием кольчатых червей (малощетинковые, пиявки, многощетинковые). Примитивные многощетинковые черви определяют возникновение четырех ветвей в древе животных.

Первая ветвь – моллюски (брюхоногие, двустворчатые, головоногие).

Вторая ветвь – членистоногие (ракообразные, паукообразные, насекомые).

Третья ветвь – иглокожие (морские звезды, морские ежи и голотурии, или морские огурцы).

Четвертая ветвь – хордовые, которые возникают вначале палеозоя, когда все типы беспозвоночных животных (рассмотренных выше) уже существовали. Произошли хордовые животные от общего с иглокожими вторичноротого двустороннесимметричного свободноплавающего предка.

Тип хордовых объединяет 3 крупные группы животных: подтипы бесчерепных, личиночнохордовых и черепных, или позвоночных. Подтип бесчерепные состоит из одного класса животных – головохордовых, всего их 30 видов, например, ланцетник. Подтип личиночнохордовые (или оболочники) произошли от примитивынх свободноплавающих бесчерепных, которые перешли к сидячему образу жизни. Оболочники все являются морскими организмами, среди наиболее известных – асцидии.

Высшим подтипом хордовых являются позвоночные. Среди позвоночных выделяют круглоротых (бесчелюстных) – это миноги, миксины. От примитивных круглоротых произошли рыбы, которые делятся на хрящевые, костные, кистеперые, двоякодышащие. Кистеперые рыбы дали начало земноводным, или амфибиям. Амфибии включают в себя хвостатых, бесхвостых, безногих. Например, протеи, тритоны, саламандры и сирены; жабы и лягушки; рыбозмеи и червяги. От амфибий произошли рептилии, или пресмыкающие. В современной фауне присутствуют отряды чешуйчатых (змеи, ящерицы, двуходки, хамелеоны), крокодилов, черепах и клювоголовых (гаттерии).

От неспециализированных, лазающих пресмыкающих произошли птицы. Современные птицы включают группы килевых, или летающих; плавающих, или пингвины; бескилевых, или бегающие (страусы, киви, казуары).

Предками млекопитающих являются неспециализированные палеозойские рептилии с чертами строения земноводных, или зверозубые рептилии. Первые млекопитающие дивергировали на две ветви. Первая ветвь – это первозвери (однопроходные), например, ехидна, утконос. Вторая ветвь – это сумчатые (коала, кенгуру, опоссумы), а также плацентарные (землеройки, летучие мыши, грызуны, хищные, ластоногие, парнокопытные, непарнокопытные, слоны, приматы, человек). Линия человека начинает развиваться от предковых форм насекомоядных полуобезьян.

Огромное достижение теории антропогенеза – знание времени появления первой человеческой популяции – 2,5 миллиона лет тому назад. Это произошло в обширных районах Африки: в Южной Африке, в Кении, Танзании, Эфиопии.

Вообще, сейчас существует такое выражение у специалистов по антропогенезу: все «out of Africa» ‒ «все из Африки». Что ни возьми, каждая новая стадия появилась в Африке: и человекообразные обезьяны, и хомо хабилис, и хомо эргастер.

Долгое время ученые считали, что эволюция человека была более-менее линейной: одна форма сменяла другую, и каждая новая была прогрессивнее, ближе к современному человеку, чем предыдущая. Сейчас ясно, что все было гораздо сложнее. Эволюционное древо гоминид оказалось весьма разветвленным. Временные интервалы существования многих видов сильно перекрываются. Иногда несколько разных видов гоминид, находящихся на разных «уровнях» близости к человеку, сосуществовали одновременно. Например, еще в сравнительно недавнем прошлом – всего-навсего 50 тысяч лет назад – на Земле существовало как минимум целых 4 вида гоминид: Homo sapiens, Homo neandertalensis, Homo erectus и Homo floresiensis.

Последние палеонтологические открытия свидетельствуют о том, что на протяжении всей человеческой эволюции, во все ее периоды, от времен жизни нашего общего с приматами предка и до самых поздних времен, в каждую отдельную эпоху одновременно сосуществовали как минимум два-три очень разных вида и даже разных семейства гоминидов («куст»), и проводить прямую линию через кого-то из них к человеку пока еще рано: неизвестно, через какие точки ее проводить.

Нельзя воображать себе эволюцию как ствол, неукротимо тянущийся к некой вершине. Эволюция больше похожа на гигантский кустарник.

В настоящее время картина развития вида Homo Sapiens развертывается на основе палеонтологических данных с применением современных молекулярно-генетических методов. Тщательный анализ показывает, что несколько десятков тысяч лет назад численность исходной популяции Homo Sapiens была не более 5000 размножающихся пар. Затем, по-видимому, эта популяция разделилась на несколько групп, причем, каждая из вновь образованных популяций в свое время проходила через так называемой « бутылочное горлышко» – период исключительно малой численности, когда число размножающихся пар могло насчитывать всего несколько десятков.

Биологическая эволюция современного человечества

Долгое время предполагалось, что эволюция человека биологически остановилась, дальше она не идет, и человечество дальше эволюционирует только в историческом плане. Теперь обнаружилось, что даже такая система, как мозг, продолжала эволюционировать, во всяком случае, в течение последнего века и, очевидно, продолжает дальше и будет продолжать эволюционировать. Причем, сделал это наш соотечественник, профессор Савельев, известный специалист по мозгу. Эволюционирует и зубная система.

Генетическая близость людей

Можно сравнить разных людей, например, аборигена Америки или Океании и человека из Европы. Кажется, что они очень разные. Анализ ДНК может дать объективную характеристику, взгляд со стороны. Если сравнить ДНК разных людей, то окажется, что они отличаются друг от друга только на одну десятую процента, то есть только каждый тысячный нуклеотид разный, а 999, в среднем, одинаковые. И более того, если посмотреть по ДНК на все генетическое разнообразие у людей, у самых разных представителей, то окажется, что этих различий гораздо меньше, чем различий между особями шимпанзе в одном и том же стаде.

Все люди – генетические братья и сестры. Такая близость и в то же время какое-то различие возможны потому, что наши ДНК содержат примерно три миллиарда нуклеотидов. Каждый тысячный составляет разницу, так что получается, что три миллиона нуклеотидов у нас разные. Правда, большинство из них, скорее всего, падает на молчащие участки ДНК, а гены у нас, в принципе, во многом одинаковые.

Родословное древо (филема) -способ изображения родственных связей и эволюции организмов в виде дерева. Еще Ч. Дарвин в 1859 г. писал, что «это сравнение очень близко соответствует истине. Зеленые ветви с распускающимися почками представляют существующие виды, а ветви предшествующих лет соответствуют длинному ряду вымерших видов». Сам Дарвин дал в 1859 г. лишь схему возникновения многих видов, родов и семейств от одного общего вида-предка, но уже в 1866 г. Э. Геккель изобразил первое родословное древо всех живых существ (см. рис.). Геккель различал три основных царства живой природы - растений, протистов и животных.

Так представлял немецкий ученый XIX в. Э. Геккель родословную животных, которую он как зоолог разработал наиболее подробно и близко к действительности.

Его древо отражало уровень биологических знаний того времени, он сближал далекие по современным представлениям группы. Сейчас биологи склоняются к мысли, что жизнь вскоре после ее возникновения расщепилась на три ствола, которые называют надцарствами. Два из них известны уже давно - это организмы, не имеющие оформленного ядра (прокариоты), и ядерные организмы (эукариоты). Сравнительно недавно некоторые систематики прокариот стали разделять на два самостоятельных надцарства - настоящих бактерий (эубактерий) и архебактерий. По некоторым чертам строения и обмена веществ архебактерий оказываются близки к эукариотам. По-видимому, архебактерий сохранили больше, чем другие организмы, черты исходного праорганизма.

Эубактерий включают бактерий и группу, называвшуюся ранее синезелеными водорослями (цианобактерии). Построить их родословное древо удалось лишь в последние годы, использовав сравнительные данные по строению их рибосомных РНК.

По-видимому, ветви архебактерий, эубактерий и предков организмов с оформленным ядром - эукариот разошлись от общего ствола жизни практически одновременно.

Дальнейшая история эукариот связана, вероятно, с симбиозом - какие-то аэробные бактерии стали обитать в цитоплазме их клеток. Так могли возникнуть митохондрии. С тех пор жизнь эукариот неразрывно связана с аэробным, кислородным дыханием, лишь немногие многоядерные амебы, обитающие в бескислородных илах, потеряли его уже вторично.

Впрочем, эту теорию симбиозогенеза эукариот разделяют не все.

Второй этап симбиоза: внедрение в эукариотические клетки каких-то синезеленых организмов - предков хлоропластов - привел к возникновению хлорофиллоносных организмов - растений. Сначала это были одноклеточные зеленые водоросли, но из них возникло все разнообразие современной флоры.

Надцарство эукариот теперь обычно разделяют на три ветви - три царства - животных, растений и грибов. Но не все в этой схеме ясно. Загадочные слизевики, например, настолько далеко отстоят от всех трех царств, что, похоже, заслуживают выделения в четвертое. Споры идут и о месте в филеме простейших, одноклеточных эукариот. Ведь одни из них ближе к растениям (эвглена, вольвокс и др.), другие - к животным. Но выделить простейших в самостоятельную ветвь, как это сделал Геккель, вряд ли возможно. Слишком они разнообразны. Современные составители древ колеблются - разделить простейших по трем основным царствам эукариот или же создавать новые царства. Число основных ветвей ядерных организмов тогда возрастет чуть ли не до десятка.

Основные ветви-царства в родословном древе делятся на более мелкие - типы. О числе этих мелких ветвей, порядке их расположения, а также о времени ответвления до сих пор идут ожесточенные споры. Одних животных систематики насчитывают до 33 типов. Не все из них имели одну эволюционную судьбу: в кроне «древа жизни» имеются пышно разветвленные побеги вроде огромных типов членистоногих, моллюсков или хордовых и тоненькие веточки, представленные немногими десятками видов. Но все они в равной степени интересны систематикам-эволюционистам. Ведь родословные древа - наглядное изображение процесса филогенеза.

В настоящее время родословные древа строятся не только на основании данных морфологии, эмбриологии и палеонтологии, как во времена Геккеля и в последующие годы. Для сравнения используют данные молекулярной биологии о последовательности аминокислот в белках и нуклеотидов в РНК и ДНК. Для сравнения внутри относительно небольших и не очень древних групп, таких, как позвоночные, используют быстро меняющиеся в эволюции белки, например гемоглобин. Для анализа же событий, происшедших миллиарды лет назад, используют такие мало меняющиеся (консервативные) молекулы, как рибосомные РНК.



Читайте также: