Численность и плотность (общая, экологическая) популяций. прямые и косвенные методы учёта численности и плотности популяций в природе

К статическим характеристикам популяции относятся общая численность и плотность, пространственное распределение особей, а также демографическая структура (возрастной и половой состав) популяции.

2.2.1. Численность и плотность популяций.

Основными характеристиками популяции прежде всего являются ее численность и плотность.

Под численностью популяции понимается общее количество особей на данной территории или в данном объеме.

Численность популяции зависит от размеров особей того или иного вида, входящих в ее состав:

- популяции бактерий и простейших могут состоять из миллиардов особей;

- у насекомых, мелких животных и травянистых растений численность в популяции может достигать сотни тысяч и миллионов особей;

- численность популяций крупных животных, некоторых птиц, а также больших древесных растений чаще всего бывает небольшой и достигает сотен или тысяч особей (например, популяция дальневосточного тигра составляет около сотни особей)

Численность популяции зависит также от величины популяционного ареала.

Так как размеры ареала популяции непостоянны, то и численность особей, входящих в ее состав, претерпевает различные изменения.

Величина популяционного ареала зависит от многих абиотических и биотических факторов среды (неблагоприятные климатические условия, потеря или ухудшение естественной среды обитания из-за стихийных бедствий – засуха, землетрясения, ураганы, пожары, наводнения и т.д., недостаток пищевых ресурсов, наличие хищников и конкурентов), а также связана с деятельностью человека (распашка степей, вырубка лесов и т.д.).

Численность особей в популяции является одной из важных характеристик при экологических исследованиях, особенно когда речь идет об исчезающих видах растений и животных.

    не зная фактической численности и состояния популяций редких и исчезающих видов, невозможно проводить различные мероприятия по их охране и воспроизводству;

    в сельском и лесном хозяйстве от численности растительноядных видов зависит наносимый ими ущерб.

Для определения численности популяций применяются различные методы.

Наиболее простым способом определения численности популяции является простой подсчет всех особей с помощью аэрофотосъемки.

Однако этот метод пригоден не для всех организмов. Чаще всего он используется при изучении популяций растений или оседлых, малоподвижных и крупных животных, образующих скопления на ограниченной территории. В этом случае все особи можно учесть визуально без особой погрешности.

В случае же с мигрирующими и кочующими животными используются другие способы оценки численности популяции.

Для этого используется способ мечения или кольцевания.

При отлове животных часть из них помечают (случайная выборка) и затем выпускают обратно в природу, чтобы они смешались с остальными членами популяции. Через некоторое время производят повторный отлов и по ранее меченым особям определяют численность популяции.

Однако во многих случаях измерение этого показателя сопряжено с определенными трудностями, так как для прямого наблюдения недоступны популяции рыб, популяции организмов, обитающих в почве, живущих в труднодоступных местах, а также совершающих значительные и нерегулярные миграции.

Поэтому для определения численности популяции наиболее часто используется такой показатель, как плотность популяции.

Плотность популяции - это количество особей (или биомасса), приходящееся на единицу площади или объема.

Биомасса - это выраженное в единицах массы (веса) или энергии количество живого вещества тех или иных организмов, обитающих на данной территории или в данном объеме.

Живое вещество - это вся совокупность тел живых организмов.

Биомасса выражается в массе сырого или сухого вещества, а также углерода или азота (г/м 2 или г/м 3).

Биомасса растений носит название фитомассы, а животных -зоомассы.

Различают среднюю плотность, т.е. число особей на единицу всего пространства и экологическую плотность, т.е. число особей на единицу обитаемого пространства.

В некоторых случаях плотность популяции оценивается числом встреч на маршруте движения животных.

Например, зимние учеты млекопитающих по следам на снегу, весенние учеты по пению самцов птиц и т.д.

Плотность популяции изменяется в зависимости от численности .

При возрастании численности плотность популяции не увеличивается лишь в том случае, если возможно расселение особей и расширение ее популяционного ареала.

Максимальная плотность для различных видов организмов и условий существования сильно отличается.

- некоторые виды птиц (пингвины, чайки) образуют так называемые «птичьи базары»;

- нередки огромные скопления розовых фламинго на некоторых озерах экваториальной Африки;

- а многие виды среднеевропейских лесных певчих птиц никогда не достигают и 1/10 такой плотности.

Показатель плотности популяции позволяет количественно сравнивать отдельные популяций, независимо от общего размера занимаемой ими территории или акватории.

Кроме того, зная плотность популяции в тот или иной момент времени, можно судить о росте, размножении и старении популяции.

В количественных экологических исследованиях надо достаточно точно оценивать число организмов, населяющих единицу пространства (площади, объема). В большинстве случаев это эквивалентно определению численности популяции. Методы оценки зависят, естественно, от размеров и образа жизни учитываемых организмов, а также от размеров обследуемого пространства. Число растений и сидячих или медленно передвигающихся животных можно подсчитать непосредственно или определить процент покрытия поверхности разными видами для сравнения их обилия. Для учета быстро движущихся организмов на обширных площадях применяют косвенные методы. В местообитаниях, в которых наблюдение за организмами затруднено вследствие особенностей их поведения и образа жизни, используют методы изъятия или отлова-выпуска (мечения, «разбавления» популяции). Все количественные учеты в зависимости от подхода к ним делятся на объективные и субъективные.

Объективные методы

К прямым объективным методам относятся те, в которых используются учет по квадратам, прямые наблюдения и фотографирование, а к косвенным - методы, основанные на изъятии особей и отлове-выпуске.

Учет по квадратам . Подсчитав число организмов на некотором числе квадратов, соответствующих известной доле обследуемой площади, можно легко экстраполировать результаты. Этот метод позволяет определить три параметра, связанные с пространственным распределением видов.

1. Плотность популяции (обилие). Плотность популяции - это число особей данного вида в единице пространства. На суше подсчитывают число организмов в случайно распределенных квадратах. Преимущество метода состоит в получении абсолютных точных оценок, позволяющих сравнивать различные виды и территории. К его недостаткам относятся трудоемкость и условность в ряде случаев понятия «особь». Например растения часто образуют множество побегов, связанных между собой подземными частями; выяснить, идет ли речь об одном генетическом индивидууме или о нескольких, на практике бывает очень сложно. Еще сложнее решить, учитывать ли такие разросшиеся иногда по большой площади индивидуумы как множество особей или только как одну.

2. Частота встречаемости. Это, в сущности, мера вероятности (шансов) обнаружить конкретный вид в случайно заложенном квадрате. Например, если вид отмечен лишь в одном из десяти квадратов, то его частота встречаемости составляет 10%. Для ее определения нужен только учет присутствия или отсутствия - число особей не имеет значения. Однако надо правильно выбрать площадь квадрата, поскольку от этого зависит результат. Кроме того, остается общая проблема работы с квадратами - как поступать с экземплярами, которые лишь частично оказались в пределах учетной площади (например, в случае стелящегося побега, укорененного за границей квадрата). Преимущество этого метода заключается в его простоте, что позволяет быстро обследовать обширные территории, например обширные лесные массивы. Недостатки же состоят в том, что на полученное значение частоты влияют размеры квадратов, размеры особей, а также особенности их пространственного распределения (случайное, равномерное, пятнистое).

3. Покрытие . Эта величина показывает какой процент обследуемой площади занимает данный вид - основаниями его особей или проекциями на землю всех их частей. Покрытие можно измерить непосредственно в поле или по фотографиям, оценить с помощью прибора Леви или просто прикинуть на глаз. Метод полезен тем, что позволяет судить об относительной роли разных видов в сообществе. Он удобен, когда число отдельных экземпляров трудно подсчитать и даже теоретически определить (например, у злаков). Однако, как правило, такие измерения либо слишком трудоемки, либо грешат субъективностью.

Непосредственное наблюдение (подсчёт) . Прямой подсчет можно применять в случае не только сидячих организмов, но и быстро движущихся крупных животных, таких как лоси, птицы и летучие мыши.

Метод изъятия. Этот метод удобен для оценки численности мелких организмов, например насекомых, на известной площади или в данном объеме воды. Стандартизированным способом (например, делая определенное число взмахов сачком установленного размера) отлавливают некоторое число животных, подсчитывают их, но не выпускают до конца исследования. Процедуру повторяют еще несколько раз, при этом с каждым разом число пойманных животных уменьшается. По этим данным строится график, экстраполируя который, получают общую численность животных: она соответствует моменту, когда они перестают попадаться (нулевой ординате), т. е. все особи данного вида теоретически оказываются отловленными и подсчитанными.

Метод отлова - выпуска. Этот метод включает отлов животного, мечение безвредным для него способом и возвращение его на прежнее место в популяции. Например на жаберные крышки пойманных сетью рыб прикрепляют алюминиевые диски; пойманных птиц окольцовывают. Мелких млекопитающих метят краской или особым образом выстригают участок шерсти; членистоногих также метят краской. Во всех случаях следует использовать определенный код, позволяющий распознавать отдельных особей. Через некоторое время проводят повторный отлов, при котором меченые особи оказываются «разбавленными» теми, что попались впервые. Размер популяции рассчитывают по формуле:

Оценочный размер популяции =(Объем меченой выборки) х (Объем второй выборки)/Число меченых особей во второй выборке

Такой оценочный размер популяции называется индексом Линкольна. Точность его зависит от ряда перечисленных ниже допущений:

1. Организмы в популяции случайным образом «перемешиваются». Это не всегда верно, поскольку популяция бывает разбита на группы, и в разные сроки отлова исследователю могут попадаться разные группы.

2. Между сроками отловов прошло достаточно времени для случайного «перемешивания». Чем менее подвижен вид, тем этот период больше.

3. Метод применим только к оседлой популяции, занимающей ограниченное пространство.

4. Организмы равномерно распределены по изучаемой площади.

5. Изменения численности популяции, связанные с миграциями отдельных особей, рождаемостью и смертностью, пренебрежимо малы.

6. Мечение не изменяет подвижности организмов и не влияет на их выживаемость (например, на их уязвимость для хищников).

Субъективные методы

Эти методы основаны не на измерениях и подсчетах, а на глазомере наблюдателя. Например, можно использовать следующую шкалу оценки обилия:

Цифры тут соответствуют примерному диапазону процентного покрытия учетного квадрата, но оно не измеряется, а только прикидывается на глаз. Очевидно, что даже при хорошем глазомере получаемые результаты сравнивать трудно: «обильный» вид может покрывать и 51 и более 90% площади и т. п. Кроме того, мелкие формы даже при высокой численности не дадут большого проективного покрытия и окажутся менее «обильными», чем крупные, но представленные в гораздо меньшем числе.

Приложение 7.


Похожая информация.


Учет численности всех обитающих на какой-либо значительной территории животных представляет весьма значительные трудности. Поэтому для абсолютного учета численности наземных позвоночных удобны популяции, изолированные от соседних естественными (или искусственными) преградами. Применительно к таким популяциям грызунов В. В. Раевским и Н. И. Калабуховым в 1934--1935 гг. было предложено, вести учет численности зверьков в изолированных популяциях с помощью меченых проб. Учет осуществляется путем отлова, мечения зверьков (кольцеванием, окраской и т. д.) и выпуска помеченных особей на место их поимки. Численность популяции определяется, по отношению числа меченых и немеченых зверьков в последующих выловах. Обычно эти отношения выражают в виде

Пропорции r/a = n/x , откуда получают формулу x = an/r , где x -- искомая численность, а -- количество помеченных "особей, n -- число повторно пойманных особей, среди которых было r -- ранее помеченных.

При учете численности мышевидных грызунов в скирдах соломы метод оказался весьма точным, но тогда же В. В. Раевским было указано, что применение метода меченых проб возможно, если отлов и кольцевание животных не представляют затруднений, если меченые зверьки быстро и равномерно распределяются между членами популяции, а популяция обитает на ограниченной территории. При вычислении общего количества зверьков должны быть учтены их размножение и гибель за время, прошедшее между отловами. К рекомендациям В. В. Раевского следует добавить, что гибель меченых животных может быть несколько более высокой.

В дальнейшем метод меченых проб успешно применялся В. Н. Павлининым (1948) . для учета, численности крота, Л. Г. Динесманом для определения абсолютной численности прыткой ящерицы. В настоящее время указанным способом пользуются для учета численности мышевидных грызунов: диких кроликов, белок, летучих мышей, а также копытных, ящериц, черепах и лягушек.

Методические вопросы, связанные с определением общей численности популяции с помощью меченых проб, разрабатываются многими авторами в разных странах. Американский ученый Циппин в 1958 году разработал методику учета численности мелких млекопитающих путем двух или нескольких последующих отловов. При этом за период исследования популяция должна оставаться относительно стабильной, вероятность попадания в ловушки должна быть одинакова для всех особей, а условия погоды и число ловушек должны оставаться неизменными. Циппин выявил весьма интересную закономерность, установив, что точность учета увеличивается не только с возрастанием числа отловленных и окольцованных животных, но и с увеличением общего размера популяции. В крупных популяциях достаточно отловить меньшую долю животных, чем в небольших. Это иллюстрируется следующим примером: при численности популяции в 200 экз. необходимо выловить не менее 55% ее, чтобы получить надежные результаты, тогда как из популяции в 100 тыс. экз. можно выловить лишь 20% животных и получить более достоверные результаты.

При соблюдении необходимых условий метод меченых проб дает удовлетворительные результаты при определении численности млекопитающих, рептилий и амфибий в изолированных популяциях.

Применение этого метода для учета птиц сложнее (Т. П. Шеварева, 1963) и может применяться для учета изолированных популяций, для учета перелетных птиц метод может использоваться в период гнездования, линьки или зимовки.

Рис. 1. Разные способы ограждения и облова пробных площадок: а--заборчик, б --канавка, в --ловчим цилиндр, г--лопушка.

(Л. П. Никифоров, 1963)

Естественным развитием описанного метода был предложенный рядом автором (Е. И. Орлов, С. Е. Лысенко и Г. К. Лонзингер, 1939; И. 3. Климченко и др., 1955; Л. П. Никифоров, 1963 и.т.д.) для учета различных животных полный вылов на изолированных площадках. Изоляция площадок достигается огораживанием их различными способами и материалами дощатый забор, ограда из проволочной сетки с жестяным карнизом или без него, заборчик из кровельного железа в сочетании с ловчими цилиндрами, шнур с цветными флажками и т. д. (рис 1).

Внутри заграждений производится вылов обитателей до-*полного прекращения попадания зверьков в. ловушки. Этот способ применялся для учета сусликов, песчанок и мелких лесных млекопитающих.

Облов изолированных площадок -- чрезвычайно трудоемкий способ учета. Если к этому добавить, что значительные по площади участки изолировать практически невозможно, а данные о численности, получаемые на малых площадках, трудно экстраполировать, станет ясным, почему облов изолированных площадок не получил широкого распространения и применяется в основном для получения поправочных коэффициентов к другим способам учета.

Рис. 2.

Большие возможности изучения экологии млекопитающих открыл метод мечения и последующего выпуска животных для выявления их индивидуальных участков. Он получил широкое распространение при исследовании подвижности и контактов мелких млекопитающих и стал одним из способов абсолютного учета численности.

Сущность метода заключается в следующем: на учетной площадке в шахматном порядке расставляются живоловки (величина площадки, интервал между ловушками, тип живоловки выбираются в соответствии с размерами и подвижностью исследуемых животных; применительно к мышевидным грызунам используются обычные мышеловки, а расстояние между рядами ловушек и лов ушкам и в ряду чаще всего составляет 10 м), Выловленных зверьков метят, например, путем отрезания пальцев (рис. 2), отмечают место поимки (№ ловушки) и выпускают. В следующий вылов отмечаются места поимки меченых и повторно выловленных зверьков, а отловленные немеченые зверьки метятся, выпускаются и т. д. После камеральной обработки материалов, полученных этим путем, становится возможным довольно точно выявить ядро оседло живущих на той или иной территории грызунов, а также отметить зверьков, забегающих со стороны или мигрирующих через учетную площадку. Однако часто возникает необходимость оценивать численность грызунов во время полевых наблюдений, и тогда возникает вопрос о времени, потребном для такого учета.

По-видимому, учет можно было бы считать законченным, как только в ловушки перестанут попадаться немеченые зверьки (Н. И. Ларина, 1957), но при закладке учетных площадок среди обширных биотопов достичь такого положения нелегко. Теоретические расчеты (вычисление эмпирической формулы кривой развития процесса вылова) показывают, что продолжительность периода, требующегося для полного вылова обитателей площадки, зависит от уровня численности. В случае, когда на 100 ловушек ежедневно ловилось до 70 зверьков, учет должен завершиться на 15-е сутки. При ежедневном вылове (на такой же площади и при том же количестве ловушек) 20--30 зверьков, представляется возможным достичь их полного учета лишь через 40. суток. Однако практически (рис. 3) количество меченых зверьков в уловах быстро возрастает в первые дни учета, а затем, достигнув 60--70% от общего количества вылавливаемых зверьков, продолжает колебаться около этого уровня. Такое состояние, когда помечено не менее двух третей обитателей площадки, достигается уже к концу двухнедельного учета. По этим данным можно составить достаточно ясное представление об уровне численности грызунов в данной местности. Дальнейшие исследования должны решить вопрос о необходимой продолжительности учета при разной численности и подвижности грызунов.

При работе в открытой местности, где норы грызунов хорошо заметны, применяется сплошная раскопка нор с выловом всех населяющих их зверьков. Так как раскопка нор и вылов зверьков по времени совпадают, удастся учитывать только действительных обитателей площадки. Эта методика широко применяется для учета обыкновенной полевки и других грызунов, имеющих неглубокие норы. Раскопке предшествует подсчет нор, отверстия тщательно затыкаются жгутами травы. При раскопке регистрируют количество раскопанных нор, входных отверстии, видовую принадлежность и количество добытых животных.

Рис. 3.

1-- суточный вылов грызунов в Базарно-Карабулакском районе Саратовской области в 1954 г; 2 -- то же в Туапсинском районе Краснодарского края; 3 -- количество меченых зверьков в суточном улове в Баэарно-Карабулакском районе; 4 -- то же в Туапсинском районе. I -- теоретическая кривая развития процесса вылова меченых зверьков (и эмпирическая формула к ней) в Саратовской области; II -- то же в Краснодарском крае.

Для учета грызунов, обитающих в глубоких норах на плотном грунте, где сплошная раскопка невозможна (например, для учета сусликов), ее заменяют выливанием зверьков водой из нор. Выливание водой всегда приводит к тому, что часть зверьков погибает в норах и не выходит на поверхность. По данным М. М. Акопяна, количество не вытесненных водой из нор малых сусликов составляет в среднем около 23%. Следовательно, показатели численности животных, получаемые при этом способе учета, всегда ниже действительной плотности населения зверьков.

В последнее время широкое распространение получило использование коэффициентов заселенности нор, позволяющее данные относительного учета перевести на абсолютные показатели. Зная, какое количество животных (того или иного вида), приходится на нору, нетрудно вычислить с плотности нор и плотность их населения. Материал для вычисления коэффициентов получают по данным раскопки нор, выливания, визуального учета и т. д.

Визуальный учет зверьков на площадках применяется только для крупных животных с дневной активностью, обитающих в открытой местности с подходящим для широкого обзора рельефом. Эта методика считается основной для учета сурков; иногда применяется и для учета сусликов.

Для оценки численности зайцев в зимнее время (а также при работе с копытными и хищными млекопитающими) применяют учет прогоном. Несколько человек загонщиков с криком движутся по узкой прямоугольной площади размером 6-- 10 га и учитывают все выходящие с площадки следы зайцев, которые и соответствуют количеству зайцев. Если учет ведется не но свежей пороше, то на краях площадки предварительно затираются все заячьи следы.

Весьма точные результаты дает полная перекладка стогов, ометов и скирд с выловом населяющих их зверьков. Стог (омет и т. д.) предварительно обмеряют и вычисляют его объем, после чего начинается перекладка соломы и ручной отлов всех обитателей, Показателем обилия служит количество зверьков на 1 м 3 субстрата.

При оценке уровня численности животных и экстраполяции учетных данных на значительные территории следует оперировать показателями средневзвешенной численности. Когда численность вида в отдельных биотопах выражена в абсолютных показателях -- числе зверьков или их нор на 1 га или на 1 км 2 , принято определять численность на «объединенный» гектар, «объединенный» километр и т. д. Такой «объединенный» гектар представляет собой отвлеченный гектар, в котором па каждый биотоп приходится доля, пропорциональная площади, занимаемой биотопом в данной местности.

Допустим, что на обследуемой территории имеется три биотопа: А (лес), Б (степь) и В (пахотные земли). Они занимают соответственно 40, 10 и 50% всей площади. В лесу численность интересующего нас вида равна -- а (10), в степи--б (20) и на пахоте--в (5) зверьков на 1 га.

Если каждый из частных показателей численности зверьков в биотопах., умножить на коэффициент, выражающий удельную площадь биотопа, и затем суммировать эти произведения, мы получим показатели средневзвешенной численности (Р).

В нашем (примере Р = 0,4а + 0,1б + 0,5в = (4а + 1б + 5в) / 10 = (40+20+25) / 10=8,5

Точно так же вычисляется показатель средневзвешенной численности при работе способами относительного учета.

Сравнительно редки случаи, когда вид населяет все биотопы,в исследуемом районе. Поэтому особенно при характеристике численности (запасов) промысловых животных употребляют показатели, отнесенные.к единицам «общей площади» или «площади типичных угодий».

Численность птиц, так же как и численность млекопитающих, определяется с помощью различных способов относительного (прямого и косвенного) и абсолютного учета. Вследствие значительного многообразия птиц и пестроты их экологических особенностей универсальных методов их учета не существует. Применительно к каждой экологически однородной группе птиц: мелких воробьиных, тетеревиных, хищных, водоплавающих, дятлов, колониально гнездящихся птиц и т. д. -- разработаны варианты методов учета, которые дают наиболее точные результаты. Учетными единицами остаются: 1 га, 1 км 2 , 1 км, 10 км, 100 км, 1 час, 10 часов и т. д. По сравнению с млекопитающими в учете птиц значительно большее место занимают маршрутные методы, позволяющие фиксировать встречи птиц (визуально или по пению). Способы прокладки маршрутов и их осуществление (пешеходный, автомобильный) меняются в зависимости от характера местности, объекта и задач учета и т. д. Наряду с относительными способами учета птиц на временных маршрутах, применяются абсолютные способы учета мелких птиц на маршрутах с постоянной шириной учетной полосы, позволяющей производить пересчет та единицу площади, учет тетеревиных птиц на ленточных пробах, учет тетеревиных протонов, учет численности птиц на пробных площадках (чаще с применением таксации или картирования птиц и их гнезд).

Методика учета численности земноводных и пресмыкающихся разработана еще слабо, и главным её недостатком является различное, нестандартное использование существующих способов исследователями. В то же время назрела необходимость выяснения запасов земноводных и пресмыкающихся в природе -- выяснения не только относительного обилия, по и биомассы их (особенно земноводных, которыми питаются многие птицы и млекопитающие и которые сами истребляют большое количество беспозвоночных).

Для учета земноводных применяется подсчет числа икринок в кладке и числа кладок, подсчет головастиков, отлов сачком, подсчет встреч земноводных на маршруте, полный вылов на учетных площадках в 0,1 или 0,5 га, отлов траншея ми или с помощью заборчиков с ловчими цилиндрами и т. д. Основным требованием при учете земноводных (и пресмыкающихся) должна быть повторность учетов в одной и той же местности и на одном и том же маршруте в разные часы суток (ночных амфибий и рептилий учитывают с ярким фонарем), разную погоду и сезоны. Это требование основано на том, что земноводные и пресмыкающиеся, как животные пойкилотермные, находятся в большей, чем гомотермные, зависимости от климатических и метеорологических условий и их активность функционально связана с изменениями этих факторов. При изучении численности земноводных и пресмыкающихся, в силу высокой лабильности их поведения, рекомендуется комбинировать несколько методов учета.

В количественных экологических исследованиях надо достаточно точно оценивать число организмов, населяющих единицу пространства (площади, объема). В большинстве случаев это эквивалентно определению численности популяции. Методы оценки зависят, естественно, от размеров и образа жизни учитываемых организмов, а также от размеров обследуемого пространства. Число растений и сидячих или медленно передвигающихся животных можно подсчитать непосредственно или определить процент покрытия поверхности разными видами для сравнения их обилия. Для учета быстро движущихся организмов на обширных площадях применяют косвенные методы. В местообитаниях, в которых наблюдение за организмами затруднено вследствие особенностей их поведения и образа жизни, используют методы изъятия или отлова-выпуска (мечения, «разбавления» популяции). Все количественные учеты в зависимости от подхода к ним делятся на объективные и субъективные.

Объективные методы

К прямым объективным методам относятся те, в которых используются учет по квадратам, прямые наблюдения и фотографирование, а к косвенным - методы, основанные на изъятии особей и отлове-выпуске.

Учет по квадратам . Подсчитав число организмов на некотором числе квадратов, соответствующих известной доле обследуемой площади, можно легко экстраполировать результаты. Этот метод позволяет определить три параметра, связанные с пространственным распределением видов.

1. Плотность популяции (обилие) . Плотность популяции - это число особей данного вида в единице пространства. На суше подсчитывают число организмов в случайно распределенных квадратах. Преимущество метода состоит в получении абсолютных точных оценок, позволяющих сравнивать различные виды и территории. К его недостаткам относятся трудоемкость и условность в ряде случаев понятия «особь». Например растения часто образуют множество побегов, связанных между собой подземными частями; выяснить, идет ли речь об одном генетическом индивидууме или о нескольких, на практике бывает очень сложно. Еще сложнее решить, учитывать ли такие разросшиеся иногда по большой площади индивидуумы как множество особей или только как одну.

2. Частота встречаемости . Это, в сущности, мера вероятности (шансов) обнаружить конкретный вид в случайно заложенном квадрате. Например, если вид отмечен лишь в одном из десяти квадратов, то его частота встречаемости составляет 10%. Для ее определения нужен только учет присутствия или отсутствия - число особей не имеет значения. Однако надо правильно выбрать площадь квадрата, поскольку от этого зависит результат. Кроме того, остается общая проблема работы с квадратами - как поступать с экземплярами, которые лишь частично оказались в пределах учетной площади (например, в случае стелящегося побега, укорененного за границей квадрата). Преимущество этого метода заключается в его простоте, что позволяет быстро обследовать обширные территории, например обширные лесные массивы. Недостатки же состоят в том, что на полученное значение частоты влияют размеры квадратов, размеры особей, а также особенности их пространственного распределения.

3. Покрытие . Эта величина показывает, какой процент обследуемой площади занимает данный вид - основаниями его особей или проекциями на землю всех их частей. Покрытие можно измерить непосредственно в поле или по фотографиям, оценить с помощью прибора Леви или просто прикинуть на глаз. Метод полезен тем, что позволяет судить об относительной роли разных видов в сообществе. Он удобен, когда число отдельных экземпляров трудно подсчитать и даже теоретически определить (например, у злаков). Однако, как правило, такие измерения либо слишком трудоемки, либо грешат субъективностью.

Непосредственное наблюдение . Прямой подсчет можно применять в случае не только сидячих организмов, но и быстро движущихся крупных животных, таких как олени, дикие пони, львы, птицы и летучие мыши.

Фотографирование . Прямым подсчетом особей на фотоснимках, сделанных с самолета, можно установить размеры популяций крупных млекопитающих и морских птиц, собирающихся на открытых пространствах. Можно также использовать «фотоловушки», которые устанавливают вдоль звериных троп; затвор фотоаппарата спускается автоматически при прерывании контуром животного светового луча, идущего к управляющему фотоэлементу.

Метод изъятия . Этот метод удобен для оценки численности мелких организмов, например насекомых, на известной площади или в данном объеме воды. Стандартизированным способом (например, делая определенное число взмахов сачком установленного размера) отлавливают некоторое число животных, подсчитывают их, но не выпускают до конца исследования. Процедуру повторяют еще несколько раз, при этом с каждым разом число пойманных животных уменьшается. По этим данным строится график, экстраполируя который, получают общую численность животных: она соответствует моменту, когда они перестают попадаться (нулевой ординате), т. е. все особи данного вида теоретически оказываются отловленными и подсчитанными.

Метод отлова-выпуска . Этот метод включает отлов животного, мечение безвредным для него способом и возвращение его на прежнее место в популяции. Например на жаберные крышки пойманных сетью рыб прикрепляют алюминиевые диски; пойманных птиц окольцовывают. Мелких млекопитающих метят краской или особым образом выстригают участок шерсти; членистоногих также метят краской. Во всех случаях следует использовать определенный код, позволяющий распознавать отдельных особей. Через некоторое время проводят повторный отлов, при котором меченые особи оказываются «разбавленными» теми, что поплись впервые.

Изучение продуктивности в узком смысле сводиться к расчету продукционных показателей по комплексу исходных данных или к прямому их измерению.

При разработке конкретных вариантов продукционных расчетов большое значение приобретают следующие вопросы:

· Наличие исходных показателей по данной популяции

· Продукционные показатели, подлежащие оценке

· Необходимая степень точности оценок.

К основным способам расчета продукции относятся: 1) метод Бойсен-Иенсена; 2) физиологический способ;

Метод Бойсен-Иенсена

К данному методу относятся расчеты продукции, когда она оценивается как изменение наличной биомассы (B 2 – B 1) плюс элиминированная биомасса (B e). Расчет производится по уравнению: P t = B 2 – B 1 + B e . Для расчета продукции по этой схеме необходимы следующие исходные данные:

1) начальная биомасса;

2) конечная биомасса;

3) биомасса, элиминированная за рассматриваемый период.

В тех случаях, когда элиминацией биомассы можно пренебречь, продукция равна изменению наличной биомассы. Этот метод дает возможность определения интегральной продукции за длительные отрезки времени.

Впервые метод был использован Бойсен-Иенсеном в 1910-1917 гг. для расчета продукции видовых популяций массовых донных беспозвоночных (мелких двустворчатых моллюсков и полихет – как кормовой базы камбалы и угря) в двух бухтах Лим-фьорда (Дания). Биомасса в начале и конце года, а также новое пополнение учитывались им непосредственно по дночерпательным пробам. Продукция (прирост биомассы) определялась по сумме потребления и остатка биомассы в конце года за вычетом начальной биомассы:

Р = В е + В 2 – В 1

За величину потребления (В е) принималась разность между начальной (N 1) и конечной (N 2) численностями, умноженная на среднее арифметическое из начального (B 1 /N 1) и конечного (B 2 /N 2) средних индивидуальных весов рассматриваемой группы животных, т.е:

B e = (N 1 – N 2) ( + ) = ½ (W 2 + W 1) (N 1 – N 2)

Прирост биомассы за период (t 1 , t 2) определяется как

B 2 - B 1 = N 2 W 2 – N 1 W 1

Тогда исходное уравнение можно привести к виду

P= 1/2 (W 2 – W 1) (N 1 + N 2) = (W 2 – W 1) Ñ

Этим способом рассчитывается продукция популяций без постоянного пополнения. Как правило, для моноцикличных видов, у которого все особи популяции принадлежат к одному возрастному (годовому) классу.

· Перед определением продукции изучить распределение популяции исследуемого вида в водоеме, признаки, позволяющие различать отдельные стадии развития, и возрастную структуру популяции.

· Чем короче жизненный цикл животного, тем чаще надо брать пробы, чтобы иметь возможность проследить за изменениями популяции. Считают, что для видов с годичным циклом хорошие результаты дают ежемесячные наблюдения.



· Во всех случаях нужно, чтобы материал состоял из такого количества проб, которое достаточно для определения ошибки величин численности и биомассы отдельных стадий и других исходных величин.

Физиологический способ

Впервые этот метод был предложен Г. Кларком и основан на балансовом равенстве. Продукция оценивается как разность между скоростью ассимиляции пищи популяцией и скоростью трат на обмен. Этот способ почти не используется для расчетов, поскольку определить скорость суммарной ассимиляции пищи в популяции трудно.

Продукция может быть определенная если известна интенсивность дыхания и коэффициент использования усвоенной пищи на рост (К 2).

Преимущество данного метода состоит в том, что когда для определенной популяции известны траты на обмен (дыхание) и величина К 2 , то интенсивность продуцирования данной популяции может быть приближенно определена, если известны только численность (N) и индивидуальный вес (WW) животных отдельных возрастов, составляющих популяцию. При этом траты на обмен находят из зависимости

Тогда, зная что К 2 = продукцию можно найти по формуле

Ограничения. В большинстве случаев рост животных описывается кривой близкой к параболе. В этом случае коэффициент использования усвоенной пищи на рост (К 2) постоянен. При любом другом типе роста этим методом воспользоваться нельзя, т.к. К 2 ≠ const. По данным литературы величина К 2 лежит в пределах 0,6>К 2 >0,2, а его среднее значение для естественных популяций за вегетационный сезон может быть принято близким к 0,3.

Таким образом, величина продукции составит в среднем 1/3 величины интенсивности дыхания, т.е. энергии, рассеиваемой животными в процессе обмена.

Определение продукции по росту особей и возрастной структуре популяции

К этой схеме относятся все способы расчета, основанные на использовании данных по росту особей и возрастной структуре популяции. Она получила наибольшее применение А.С. Константинов (1960) предложил считать продукцию по скорости прироста массы у всех особей популяции, В более поздних исследованиях учтена также продукция за счет размножения, Продукция рассчитывается по уравнению Р = Р 1 + Р 2 . Конкретные варианты многочисленны, они отражают различные способы оценки индивидуальных приростов.

Исходные данные:

1) прирост массы особей разного возраста;

2) возрастная структура популяции;

3) масса отражденного потомства (если она не учтена как часть прироста массы самок);

4) средняя биомасса популяции.

Определение продукции по динамике численности популяции

В основе расчета лежат данные по динамике численности популяции. Во избежание анализа роста и возрастной структуры всем особям приписывают некоторую среднюю массу. Тогда продукция определяется по скорости размножения.

Исходные данные:

1) скорость размножения;

2) средняя численность популяции;

3) средняя масса особи.

Графический метод

В состав популяции входят особи разного возраста, с разной скоростью роста, которая закономерно зависит от возраста. Относительный (удельный) прирост обычно снижается от начальных стадий развития к последующим. Абсолютный прирост, который представляет собой произведение удельного прироста на вес особи, на ранних стадиях возрастает, достигает максимума на некоторой средней стадии развития и затем на последующих стадиях снижается. Поэтому для определения продукции надо знать, во-первых, как для данного объекта и условий абсолютный прирост зависит от возраста и, во-вторых, возрастной состав популяции, т.е. численность отдельных возрастов.

Эти данные определяются опытным путем и сводятся в соответствующие таблицы, на основе которых строится итоговый график: на оси ординат откладывается абсолютный прирост животных по каждой возрастной группе в зависимости от ее численности. Величина суточной продукции каждого возраста равна произведению среднесуточного абсолютного прироста особей данного возраста на их численность. По величинам этих произведений строиться кривая продукции возрастов популяции. Площадь, ограниченная кривой (т.е. интеграл кривой), дает среднесуточную продукцию всей популяции данного вида за счет роста животных.

Радиоуглеродный метод

Был использован для определения продукции зоопланктона. Фактически это тот же метод, используемый при определении первичной продукции, только с учетом пелагических беспозвоночных.

Как известно, при определении первичной продукции радиоуглеродным методом количество ОВ, вновь образованного в процессе фотосинтеза (С ф ), рассчитывается по формуле

С ф = r

где C k - содержание углерода углекислоты и бикарбоната; R - радиоактивность внесенного в склянку изотопа; r - радиоактивность фитопланктона, приобретенная за время опыта.

Если в экспериментальном сосуде вместе с фитопланктоном находится и питающийся им зоопланктон, то, потребляя продуцируемое фитопланктоном вещество, зоопланктон приобретает радиоактивность r 1 . Тогда аналогично выше приведенному уравнению вновь образованное за счет фитопланктона вещество зоопланктона (С а ) может быть определено из уравнения

С а = r 1

Поскольку к началу опыта в экспериментальном сосуде уже имелся фитопланктон с биомассой В , потенциальная пища зоопланктона равна сумме (С ф + В ).Следовательно от величины В за время опыта усваивается такая же часть наличной пищи, как и от Сф, равная в обоих случаях r 1 . /r . Это позволяет определить общее приращение ОВ зоопланктоном, т.е. его продукцию (С а ) по формуле

С а = (С ф + В )

Ограничения . Значение радиоуглеродного метода ограничено тем, что с его помощью можно получить только общий прирост зоопланктона, точнее то количество усвоенной и использованной на рост пищи, которое остается в составе зоопланктона к концу опыта, и нельзя получить продукцию отдельных видовых популяций.

Использование «универсальных» уравнений

Классическая трактовка термина "продукция" относится к популяционному уровню организации организмов и означает суммарный прирост особей за определенный промежуток времени (как выживших, так и элиминированных), включая прирост за счет увеличения массы тела, образования генеративных продуктов, экзувиев и жидких метаболитов. Позднее было предложено использовать термин "продукция" для особи, подчеркивая существующие различия между продукцией (Р) и скоростью прироста массы (Δw). При определении продукции для активно растущей популяции с большим удельным весом быстрорастущей молоди, как это имеет место у водных беспозвоночных, расхождение между Р и Δw особенно мало. Наконец различия между Р и Δw могут быть вообще сведены до минимума в расчетах суточной удельной продукции, когда можно не учитывать образование половых продуктов, секрецию желез, отчуждение покровных элементов.

Таким образом, для оценки продукции беспозвоночных, отличающихся по массе и продолжительности периода роста, использовалась удельная суточная скорость роста и данные по средней численности особей, либо их отдельных возрастных стадий. На уровне популяции средневзвешенная величина суточных удельных весовых приростов всех ее особей соответствует суточной удельной продукции - С w . При определении удельной продукции на уровне популяций можно руководствоваться двумя основополагающими принципами:

1) зависимостью продукции от видовой принадлежности;

2) ее зависимостью от размерной структуры.

Отмечая факт существования обобщенных зависимостей для гидробионтов Мирового океана, рядом авторов была сделана попытка получить "универсальные" уравнение для расчета продукции в зависимости от массы тела.

Существенные отличия расчетов продукции по "универсальному" уравнению для планктонных организмов связаны с тем, что последнее отражает предельную скорость роста, редко достигаемую в природных условиях. Интересно отметить, что графики сравниваемых прогностических уравнений пересекаются в одной точке, соответствующей энергоемкости 0,1 Дж и удельной продукции 0,055 сут -1 .

Данная область значений продукции соответствует зоне перехода от мезозоопланктона к макрозообентосу. Принимая во внимание значение среднестатистической сырой массы черноморских гидробионтов и их удельную калорийность, можно заключить, что, в целом функциональная активность мейобентоса и зоопланктона близки по величине, превышая по удельной продукции значительно более крупных донных беспозвоночных в 10-15 раз.

Выведенное «универсальное» уравнение для расчета удельной продукции черноморских гидробионтов было получено на основе измерения скорости роста модельных видов на всех стадиях жизненного цикла. Эта методика обеспечила минимальную погрешность определений, не превысившую двукратного уровня, при этом в среднем отмечалось занижение расчетной величины продукции в 60-65%случаях. Таким образом, для балансовых расчетов следует использовать данные прямых определений продукции. В тех же случаях, когда такие данные отсутствуют, либо для получения обобщенных оценок величины "Р" может быть рекомендовано уравнение вида:

P Q = 0,032 · Q -0,235

Q= 1,612·WW 0,025 – планктонные беспозвоночные Черного моря

Q= 28,622·DW – планктонные беспозвоночные Черного моря

Q= 5,60∙DW – бентосные беспозвоночные Черного моря

где P Q – удельная продукция, сут -1 ; Q – энергетический эквивалент массы тела гидробионтов, Дж∙экз -1 ; DW- сухая масса, мг·экз -1 ; WW - общая сырая масса, мг.

Продукция биоценозов

С позиции продукционной гидробиологии биоценоз можно определить как систему, состоящую из популяций животных разных видов, локализованную во времени и в пространстве и характеризующуюся некоторой внутренней структурой и взаимосвязями между популяциями входящих в нее видов, среди которых наиболее значимы трофические.

В состав биоценозов входят популяции животных разных видов, которые в наиболее простом случае подразделяются на два трофических уровня: нехищных и хищных животных.

Часть энергии ассимилированной хищниками пищи рассеивается в процессе метаболизма. Согласно общему определению продукции, продукция биоценоза (P b ) может быть представлена как разность между продукцией нехищных животных, выраженной в единицах энергии, и энергией, рассеиваемой хищниками в процессе обмена:

P b = P f + P p - A p

где P f – продукция нехищных животных, P p - продукция хищников, A p - ассимилированная хищниками пища. Приняв во внимание, что A p = P p + R p , где R p – траты хищных животных на обмен, получаем

P b = P f - R p

Приведенные соотношения справедливы и для количества веществ, продуцированных за длительный период времени.

В более узком смысле продукцию биоценоза животных рассматривают при определении продукции биомассы конкретных видов, доступной для непосредственного потребления хищниками, не входящими в состав данного сообщества, например рыбами. Тогда

P b = P f + P p - С p

где С p – рацион хищников, входящих в состав биоценоза.

Последнее равенство широко применяется на практике при оценке кормовой базы для рыб в водоемах. Рассчитанную таким образом продукцию часто называют чистой или реальной продукцией биоценозов или сообществ животных.

В озерах и водохранилищах умеренных широт продукция (кДж/м 2), создаваемая донным населением за вегетационный сезон, непосредственно зависит от средней за этот период биомассы животных (кДж/м 2):

P b = (2,198 ± 0,496) В

Из уравнения следует, что продукция сообщества бентоса за вегетационный сезон прямо пропорциональна их средней биомассе за это же время и превышает ее примерно в 2,2 раза, т.е. Р/В-коэффициент за этот период для разных водоемов может быть принят равным 2,2. Приняв среднюю продолжительность сезона равной примерно 150 сут, получаем среднее значение удельной продукции – 0,015 сут -1 .

С помощью этого уравнения может быть ориентировочно рассчитана продукция биоценозов или сообществ животных планктона и бентоса, по данным об удельной продукции и средней биомассе. Следует подчеркнуть, что такого рода определения продукции биоценозов или сообществ животных используются для расчета баланса энергии в водоемах за вегетационный сезон или год.



Читайте также: