Анион и катион. онкологических больных обнаруживает очень специфическое излуче ние

В волшебном мире химии возможно любое превращение. Например, можно получить безопасное вещество, которым часто пользуются в быту, из нескольких опасных. Подобное взаимодействие элементов, в результате которого получается однородная система, в которой все вещества, вступающие в реакцию, распадаются на молекулы, атомы и ионы, называется растворимость. Для того чтобы разобраться с механизмом взаимодействия веществ, стоит обратить внимание на таблицу растворимости .

Таблица, в которой показана степень растворимости, является одним из пособий для изучения химии. Те, кто постигают науку, не всегда могут запомнить, как определённые вещества растворяются, поэтому под рукой всегда следует иметь таблицу.

Она помогает при решении химических уравнений, где участвуют ионные реакции. Если результатом будет получение нерастворимого вещества, то реакция возможна. Существует несколько вариантов:

  • Вещество хорошо растворяется;
  • Малорастворимо;
  • Практически не растворяется;
  • Нерастворимо;
  • Гидрализуется и не существует в контакте с водой;
  • Не существует.

Электролиты

Это растворы или сплавы, проводящие электрический ток. Электропроводность их объясняется мобильностью ионов. Электролиты можно поделить на 2 группы :

  1. Сильные. Растворяются полностью, независимо от степени концентрации раствора.
  2. Слабые. Диссоциация проходит частично, зависит от концентрации. Уменьшается при большой концентрации.

Во время растворения электролиты диссоциируют на имеющие разный заряд ионы: положительные и отрицательные. При воздействии тока положительные ионы направляются в сторону катода, тогда как отрицательные в сторону анода. Катод – положительный заряд, анод – отрицательный. В итоге происходит движение ионов.

Одновременно с диссоциацией проходит противоположный процесс – соединение ионов в молекулы. Кислоты – это такие электролиты, при распаде которых образуется катион – ион водорода. Основания – анионы – это гидроксид ионы. Щелочи – это основания, которые растворяются в воде. Электролиты, которые способны образовывать и катионы и анионы, называются амфотерными.

Ионы

Это такая частица, в которой больше протонов или электронов, он будет называться анион или катион, в зависимости от того, чего больше: протонов или электронов. В качестве самостоятельных частиц они встречаются во многих агрегатных состояниях: газах, жидкостях, кристаллах и в плазме. Понятие и название ввёл в обиход Майкл Фарадей в 1834 году. Он изучал воздействие электричества на растворы кислот, щелочей и солей.

Простые ионы несут на себе ядро и электроны. Ядро составляет почти всю атомную массу и состоит из протонов и нейтронов. Количество протонов совпадает с порядковым номером атома в периодической системе и зарядом ядра. Ион не имеет определённых границ из-за волнового движения электронов, поэтому невозможно измерить их размеры.

Отрыв электрона от атома требует, в свою очередь, затрат энергии. Она называется энергия ионизации. Когда присоединяется электрон, происходит выделение энергии.

Катионы

Это частицы, носящие положительный заряд. Могут иметь разную величину заряда, например: Са2+ – двузарядный катион, Na+ – однозарядный катион. Мигрируют к отрицательному катоду в электрическом поле.

Анионы

Это элементы, имеющие отрицательный заряд. А также обладает различным количеством величины зарядов, например, CL- – однозарядный ион, SO42- – двухзарядный ион. Такие элементы входят в состав веществ, обладающих ионной кристаллической решёткой, в поваренной соли и многих органических соединениях.

  • Натр​ий . Щелочной металл. Отдав один электрон, находящийся на внешнем энергетическом уровне, атом превратится в положительный катион.
  • Хлор . Атом этого элемента принимает на последний энергетический уровень один электрон, он превратится в отрицательный хлорид анион.
  • Поваренная соль . Атом натрия отдаёт электрон хлору, вследствие этого в кристаллической решётке катион натрия окружён шестью анионами хлора и наоборот. В результате такой реакции образуется катион натрия и анион хлора. Благодаря взаимному притяжению формируется хлорид натрия. Между ними образуется прочная ионная связь. Соли – это кристаллические соединения с ионной связью.
  • Кислотный остаток . Это отрицательно заряженный ион, находящийся в сложном неорганическом соединении. Он встречается в формулах кислот и солей, стоит обычно после катиона. Практически для всех таких остатков есть своя кислота, например, SO4 – от серной кислоты. Кислот некоторых остатков не существует, и их записывают формально, но они образуют соли: фосфит ион.

Химия – наука, где возможно творить практически любые чудеса.

Классификация катионов и анионов.

Методы анализа.

Аналитическая химия – наука об определении химического состава вещества.

Аналитическая химия и ее методы широко применяются на предприятиях общественного питания и пищевой промышленности для осуществления контроля качества сырья, полуфабрикатов, готовой продукции; определения сроков реализации и условий хранения продукции.

В аналитической химии различают количественный и качественный анализ. Задача количественного анализа - определение относительного количества элементов в соединениях или химических соединений в смесях; задача качественного анализа - обнаружить присутствие элементов в соединениях или химических соединений в смесях.

История развития аналитической химии.

Изначально с помощью качественного анализа определяли свойства некоторых минералов. Количественный анализ применялся в пробирном деле (определение благородных металлов) - Древняя Греция, Египет. В 9-10веке методы пробирного дела применялись для определения благородных металлов в Киевской Руси.

Аналитическая химия как наука начинает развиваться с середины 17 века.

Впервые основы качественного анализа изложил английский ученый Р.Бойль, он же ввел термин «химический анализ». Р.Бойль считается родоначальником научной аналитической химии.

Законы количественного анализа изложил Ломоносов в середине 17 века. Ломоносов впервые начал применять взвешивание исходных веществ и продуктов реакции.

К середине ХIХ века оформились титриметрические и гравиметрические методы анализа, методы газового анализа.

Первый учебник по аналитической химии появился в России в 1871 г. Автор этого учебника – русский химик Н.А. Меншуткин.

Во второй половине ХХ века появилось много новых методов анализа: рентгеновские, масс-спектральные и т.д.

Классификация методов анализа, применяемых в аналитической химии.

Аналитическая химия включает два основных раздела: количественный анализ и качественный анализ.

Методы качественного анализа:

Ø Химические

Ø Физико-химические

Ø Физические

Химический анализ:

Ø «сухим» путем

Ø «мокрым» путем

«Сухой» путь – химические реакции, которые идут при накаливании, сплавлении, окрашивании пламени.

Пример : окрашивание пламени катионами металлов (натрий – желтый, калий – розово-фиолетовый, кальций – оранжево-красный, медь – зеленый и т.д.), которые образуются при электролитической диссоциации солей:

NaCl → Na + + Cl -

K 2 CO 3 → 2K + + CO 3 2-

«Мокрый» путь – химические реакции в растворах электролитов.

Также в качественном анализе в зависимости от количества исследуемого вещества, объема раствора, техники выполнения различают:

1) макрометод: сравнительно большие навески (0,1 г и более) или большие объемы растворов (10 мл и более) исследуемого вещества. Этот метод наиболее удобен в определении.

2) микрометод: навески от 10 до 50 мг и объемы раствора до нескольких мл.

3) полумикрометод: навески 1-10 мг и объемы раствора около 0,1 – 1 мл.

Микрометод и полумикрометод обладают двумя несомненными достоинствами:

1. Большая скорость выполнения анализа

2. Небольшое требуемое количество анализируемого вещества.

Физико-химические методы анализа:

Ø колориметрические (сравнение окраски двух растворов)

Ø нефелометрические (помутнение исследуемого раствора от действия каких-то реагентов)

Ø электрохимические (момент окончания реакции определяют по изменению электропроводности раствора, потенциала электродов в исследуемом растворе)

Ø рефрактометрические (определяют показатель преломления)

Физические методы анализа:

Ø спектральный анализ (изучение спектров излучения или поглощения)

Ø люминесцентный (изучение характера свечения вещества под действием УФ)

Ø масс-спектрометрический

Ø рефрактометрический

Для обнаружения ионов в растворах в аналитической химии используют аналитические реакции.

Аналитическая реакция – химическое превращение, при котором исследуемое вещество переводят в новое соединение с характерным признаком.

Признаки аналитической реакции:

Ø Выпадение осадка

Ø Растворение осадка

Ø Изменение цвета

Ø Выделение газообразного вещества

Условия аналитической реакции:

Ø Быстрое протекание

Ø Специфичность

Ø Чувствительность

Чувствительная реакция – реакция, при помощи которой можно обнаружить наименьшее количество вещества из наименьшего количества раствора.

Чувствительная реакция характеризуется:

1. Открываемым минимумом (наименьшее количество вещества, которое может быть обнаружено данной реакцией)

2. Минимальной концентрацией (отношение массы определяемого вещества к массе или объему растворителя).

Специфичной называется реакция, при помощи которой можно открыть ион в присутствии других ионов по специфичному изменению цвета, образованию характерного осадка, выделению газа и т.д.

Пример: ион бария обнаруживают хроматом калия К 2 СгО 4 (выпадает ярко-желтый осадок).

На специфичных реакциях основан анализ, называемый дробным . С помощью дробного анализа можно открывать ионы в любой последовательности, используя специфичные реакции.

Однако специфичных реакций известно мало, чаще реактивы взаимодействуют с несколькими ионами. Такие реакции и реактивы называются общими . В этом случае применяют систематический анализ. Систематический анализ - определенная последовательность обнаружения ионов, находящихся в смеси. Ионы, составляющие смесь, разделяют на отдельные группы, из этих групп каждый ион выделяют в строго определенной последовательности, а затем открывают этот ион наиболее характерной реакцией. Реакции, характерные для одного иона, называются частными .

Классификация катионов и анионов.

В основу классификации ионов в аналитической химии положено различие в растворимости образуемых ими солей и гидроксидов.

Аналитическая группа – группа катионов или анионов, которая с каким-то одним реактивом дает сходные аналитические реакции.

Классификации катионов:

Ø сульфидная, или сероводородная,– является классической, разработал Меншуткин Н.А.;

Ø кислотно-основная и т.д.

Сульфидная классификации катионов основана на отношении катионов к сульфид-иону:

1) Катионы, осаждаемые сульфид-ионом

2) Катионы, не осаждаемые сульфид-ионом.

Каждая группа имеет свойгрупповой реактив – реактив, используемый для открытия одной группы ионов и образующий осадок с ионами данной группы (Ва 2+ + SО 4 2- → ВаSО 4 ↓)

Определение катионов проводят систематическим анализом .

Химия - "волшебная" наука. А где вы еще получите безопасное вещество, соединив два опасных? Речь идет об обыкновенной поваренной соли - NaCl . Рассмотрим подробнее каждый элемент, опираясь на ранее полученные знания об устройстве атома.

Натрий - Na , щелочной металл (группа IA).
Электронная конфигурация: 1s 2 2s 2 2p 6 3s 1

Как видим, натрий имеет один валентный электрон, который он "согласен" отдать, чтобы его энергетические уровни стали завершенными.

Хлор - Cl , галоген (группа VIIA).
Электронная конфигурация: 1s 2 2s 2 2p 6 3s 2 3p 5

Как видим, хлор имеет 7 валентных электронов и ему "не хватает" одного электрона, чтобы его энергетические уровни стали завершенными.

Теперь догадываетесь, почему так "дружны" атомы хлора и натрия?

Ранее говорилось, что полностью "укомплектованные" энергетические уровни имеют инертные газы (группа VIIIA) - у них полностью заполнены внешние s и p-орбитали. Отсюда они так плохо вступают в химические реакции с другими элементами (им просто не надо ни с кем "дружить", поскольку ни отдавать, ни принимать электроны они "не хотят").

Когда валентный энергетический уровень заполнен - элемент становится стабильным или насыщенным .

Инертным газам "повезло", а что же делать остальным элементам периодической таблицы? Конечно же, "искать" себе пару, подобно дверному замку и ключу - определенному замку соответствует свой ключ. Так и химические элементы, пытаясь заполнить свой внешний энергетический уровень, вступают с другими элементами в реакции, создавая устойчивые соединения. Т.к. заполняются внешние s (2 электрона) и р (6 электронов) орбитали, то данный процесс получил название "правило октета" (октет = 8)

Натрий: Na

На внешнем энергетическом уровне атома натрия находится один электрон. Для перехода в стабильное состояние, натрий должен: либо отдать этот электрон, либо принять семь новых. Исходя из вышесказанного, натрий будет отдавать электрон. При этом у него "исчезает" 3s-орбиталь, а количество протонов (11) будет на один превосходить количество электронов (10). Поэтому, нейтральный атом натрия превратится в положительно заряженный ион - катион .

Электронная конфигурация катиона натрия: Na + 1s 2 2s 2 2p 6

Особо внимательные читатели справедливо скажут, что такая же электронная конфигурация и у неона (Ne). Так что же, натрий превратился в неон? Вовсе нет - не забывайте о протонах! Их по-прежнему; у натрия - 11; у неона - 10. Говорят, что катион натрия является изоэлектронным неону (поскольку их электронные конфигурации одинаковы).

Подведем итог:

  • атом натрия и его катион отличаются одним электроном;
  • катион натрия имеет меньший размер, поскольку он теряет внешний энергетический уровень.

Хлор: Cl

У хлора ситуация прямо противоположная - на внешнем энергетическом уровне у него находится семь валентных электронов и ему надо принять один электрон, чтобы стать стабильным. При этом произойдут следующие процессы:

  • атом хлора примет один электрон и станет отрицательно заряженным анионом (17 протонов и 18 электронов);
  • электронная конфигурация хлора: Cl - 1s 2 2s 2 2p 6 3s 2 3p 6
  • анион хлора является изоэлектронным аргону (Ar);
  • поскольку внешний энергетический уровень хлора "достроился", то радиус катиона хлора будет немного больше, чем у "чистого" атома хлора.

Поваренная соль (хлорид натрия): NaCl

Исходя из вышесказанного, видно, что электрон, который отдает натрий, становится электроном, который получает хлор.

В кристаллической решетке хлорида натрия каждый катион натрия окружен шестью анионами хлора. И наоборот, каждый анион хлора окружен шестью катионами натрия.

В результате перемещения электрона образуются ионы: катион натрия (Na +) и анион хлора (Cl -). Поскольку противоположные заряды притягиваются, то образуется устойчивое соединение NaCl (хлорид натрия) - поваренная соль .

В результате взаимного притяжения противоположно заряженных ионов, образуется ионная связь - устойчивое химическое соединение.

Соединения с ионными связями называют солями . В твердом состоянии все ионные соединения являются кристаллическими веществами.

Следует понимать, что понятие ионной связи довольно относительно, строго говоря к "чистым" ионным соединениям можно отнести только те вещества, у которых разность в электроотрицателности атомов, которые образуют ионную связь, равна или более 3. По этой причине в природе существует всего с десяток чисто ионных соединений - это фториды щелочных и щелочно-земельных металлов (например, LiF; относительная электроотрицательность Li=1; F=4).

Чтобы не "обижать" ионные соединения, химики договорились считать, что химическая связь является ионной, если разность электроотрицательностей атомов, образующих молекулу вещества равна или более 2. (см. понятие электроотрицательности).

Катионы и анионы

Другие соли образуются по аналогичному принципу, что и хлорид натрия. Металл отдает электроны, а неметалл их получает. Из периодической таблицы видно, что:

  • элементы группы IA (щелочные металлы) отдают один электрон и образуют катион с зарядом 1 + ;
  • элементы группы IIA (щелочноземельные металлы) отдают два электрона и образуют катион с зарядом 2 + ;
  • элементы группы IIIA отдают три электрона и образуют катион с зарядом 3 + ;
  • элементы группы VIIA (галогены) принимают один электрон и образуют анион с зарядом 1 - ;
  • элементы группы VIA принимают два электрона и образуют анион с зарядом 2 - ;
  • элементы группы VA принимают три электрона и образуют анион с зарядом 3 - ;

Распространенные одноатомные катионы

Распространенные одноатомные анионы

Не все так просто с переходными металлами (группа В), которые могут отдавать разное количество электронов, образуя при этом по два (и более) катиона, имеющих разные заряды. Например:

  • Cr 2+ - ион двухвалентного хрома; хром (II)
  • Mn 3+ - ион трехвалентного марганца; марганец (III)
  • Hg 2 2+ - ион двухатомной двухвалентной ртути; ртуть (I)
  • Pb 4+ - ион четырехвалентного свинца; свинец (IV)

Многие ионы переходных металлов могут иметь разную степень окисления.

Ионы не всегда бывают одноатомными, они могут состоять из группы атомов - многоатомные ионы . Например, ион двухатомной двухвалентной ртути Hg 2 2+ : два атома ртути связаны в один ион и имеют общий заряд 2 + (каждый катион имеет заряд 1 +).

Примеры многоатомных ионов:

  • SO 4 2- - сульфат
  • SO 3 2- - сульфит
  • NO 3 - - нитрат
  • NO 2 - - нитрит
  • NH 4 + - аммоний
  • PO 4 3+ - фосфат

Почему анионы жизненно необходимы человеческому организму?

T акие факторы, как ежедневные стрессы, нерегулярное питание, нездоровый образ жизни, загрязненная окружающая среда легко приводит к накоплению свободных радикалов в человеческом организме, которые вызывают все виды острых и хронических заболеваний в течении определенного периода времени.К тому же, формирование свободных радикалов в значительной степени обусловлено недостатком отрицательно-заряженных ионов. Из этого следует вывод, что для того, чтобы создать здоровые условия для жизнедеятельности, необходимо поддерживать определенный уровень отрицательно-заряженных ионов в организме.

Витамины воздуха - анионы – залог здоровья и долголетия!
Давнее открытие анионов перевернуло весь научный мир медицины. Теперь полезные для организма «воздушные витамины» можно получить прямо из воздуха. Слово «Анионы» на слуху у тех, кто заботится о своем здоровье. Однако не все люди до конца понимают, что же это такое «анионы».
Если взять молекулы и атомы воздуха в обычных условиях жизни человека нейтральны и изменить их структуры под воздействием например, микроволновой радиации (в природе такой же эффект простым ударом молнии), молекулы теряют вращающиеся вокруг атомного ядра отрицательно заряженных электроны. Затем они соединяются с нейтральным молекулам, придавая и им отрицательный заряд. Именно такие молекулы и являются анионами .
Анионы не имеют ни цвета ни запаха, в то время как наличие на их орбите отрицательных электронов вытягивает из воздуха микрочастицы и микроорганизмы, удаляя всю пыль и убивая болезнетворные микробы. Анионы можно сравнить с витаминами, они также важны и нужны человеческому организму. Именно поэтому они именуются «Воздушными витаминами», «очистителем воздуха» и «элементом долголетия».
Каждый человек, заботящийся о своем здоровье, обязан воспользоваться целебной силой анионов, ведь они нейтрализуют пыль, и уничтожают различные виды микробов. Чем большее количество анионов в воздухе, тем меньше в нем содержание патогенной микрофлоры.
По данным Всемирной Организации Здравоохранения среднее содержание анионов в жилом помещении города на уровне 40-50, в то время как оптимальным для человеческого организма является содержание 1200 анионов на 1 куб.см. Например, содержанием анионов в свежем горном воздухе составляет 5000 на1 куб.см. Именно поэтому в горах, на свежем воздухе люди не болеют и живут долго, оставаясь при этом в трезвом рассудке до глубокой старости.

Как измеряют поток анионов?
Поток анионов, излучаемый предметами, можно измерить двумя способами: динамическим и статическим.
Статичный метод измерения потока анионов используется для тестирования материалов, генерирующих лучевые потоки анионов. К ним относятся только твердые предметы, такие как камни. В этом случае поток анионов замеряется напрямую специальным прибором. Статичный метод применяют для измерения природных потоков анионов, например на морском побережье.

Динамическим методом измеряют волновой поток анионов. Именно волновой способ излучения используется в женских анионовых прокладках. Это означает, что анионы вырабатываются встроенным чипом не постоянно, а только при определенной температуре, влажности, трении. Шанхайским контрольным институтом Текстиля и технологий неоднократно проводилось тестирование анионовых прокладок динамическим методом. Результаты были положительными – анионовая гигиеническая продукция соответствует стандартам, и действительно производит тот эффект, о котором заявляют производители.

Анионы - это составные части двойных, комбинированных, средних, кислых, основных солей. В качественном анализе каждый из них можно определить с помощью определенного реактива. Рассмотрим качественные реакции на анионы, используемые в неорганической химии.

Особенности анализа

Он является одним из важнейших вариантов идентификации веществ, распространенных в неорганической химии. Существует подразделение анализа на два компонента: качественный, количественный.

Все качественные реакции на анионы подразумевают идентификацию вещества, установление наличия в нем определенных примесей.

Количественный анализ устанавливает четкое содержание примесей и базового вещества.

Специфика качественного обнаружения анионов

Далеко не все взаимодействия можно использовать в качественном анализе. Характерной считается реакция, которая приводит к изменению окраски раствора, выпадению осадка, его растворению, выделению газообразного вещества.

Группы анионов определяют путем селективной реакции, благодаря которой можно обнаружить только определенные анионы в составе смеси.

Чувствительность - это наименьшая концентрация раствора, при которой определяемый анион можно обнаружить без его предварительной обработки.

Групповые реакции

Существуют такие химические вещества, которые способны при взаимодействии с разными анионами давать сходные результаты. Благодаря применению группового реактива можно выделять различные группы анионов, проводя их осаждение.

При проведении химического анализа неорганических веществ, в основном, проводят исследование водных растворов, в которых соли присутствуют в диссоциированном виде.

Именно поэтому анионы солей определяют путем их открытия в растворе вещества.

Аналитические группы

В кислотно-основном методе принято выделять три аналитические группы анионов.

Проанализируем, какие анионы можно определять, пользуясь определенными реактивами.

Сульфаты

Для их выявления в смеси солей в качественном анализе применяют растворимые соли бария. Учитывая, что сульфат-анионы - это SO4, краткое ионное уравнение происходящей реакции имеет вид:

Ba 2 + + (SO 4) 2- = BaSO4

Полученный в результате взаимодействия сульфат бария имеет белый цвет, является нерастворимым веществом.

Галогениды

При определении анионов хлора в солях в качестве реактива используют растворимые соли серебра, так как именно катион этого благородного металла дает нерастворимый белый осадок, поэтому так определяют хлорид-анионы. Это далеко не полный перечень качественных взаимодействий, используемых в аналитической химии.

Помимо хлоридов, соли серебра используют также для выявления наличия в смеси йодидов, бромидов. Каждая из солей серебра, образующая соединение с галогенидом, имеет определенную окраску.

Например, AgI имеет желтый цвет.

Качественные реакции на анионы 1 аналитической группы

Сначала рассмотрим, какие в нее входят анионы. Это карбонаты, сульфаты, фосфаты.

Самой распространенной в аналитической химии, считается реакция на определение сульфат-ионов.

Для ее проведения можно воспользоваться растворами сульфата калия, хлорида бария. При смешивании между собой этих соединений образуется белый осадок сульфата бария.

В аналитической химии обязательным условием является написание молекулярных и ионных уравнений тех процессов, которые были проведены для выявления анионов определенной группы.

Если записывать полное и сокращенное ионное уравнение для данного процесса, можно подтвердить образование нерастворимой соли BaSO4 (сульфата бария).

При выявлении карбонат-иона в смеси солей используют качественную реакцию с неорганическими кислотами, сопровождающуюся выделением газообразного соединения - углекислого газа. Кроме того, при выявлении карбоната в аналитической химии также используется реакция с хлоридом бария. В результате ионного обмена выпадает белый осадок карбоната бария.

Сокращенное ионное уравнение процесса описывается схемой.

Хлорид бария осаждает карбонат-ионы в виде белого осадка, что используется в качественном анализе анионов первой аналитической группы. Иные катионы не дают такого результата, поэтому не подходят для определения.

При взаимодействии карбоната с кислотами краткое ионное уравнении имеет следующий вид:

2H + +CO 3 - =CO 2 +H 2 O

При выявлении фосфат-ионов в смеси также применяется растворимая соль бария. Смешивание раствора фосфата натрия с хлоридом бария приводит к образованию нерастворимого фосфата бария.

Таким образом, можно сделать вывод об универсальности хлорида бария, возможности его применения для определения анионов первой аналитической группы.

Качественные реакции на анионы второй аналитической группы

Хлорид-анионы можно обнаружить при взаимодействии с раствором нитрата серебра. В результате ионного обмена образуется творожистый белый осадок хлорида серебра (1).

Бромид этого металла имеет желтоватый цвет, а йодид отличается насыщенной желтой окраской.

Молекулярное взаимодействие хлорида натрия с нитратом серебра имеет следующий вид:

NaCl + AgNO 3 =AgCl +NaNO 3

Среди специфических реактивов, которые можно использовать при определении в смеси иодид-ионов, выделим катионы меди.

KI + CuSO 4 = I 2 + K 2 SO 4 + CuI

Данный окислительно-восстановительный процесс характеризуется образованием свободного йода, что и применяется в качественном анализе.

Силикат-ионы

Для обнаружения этих ионов используют концентрированные минеральные кислоты. Например, при добавлении к силикату натрия концентрированной соляной кислоты образуется осадок кремниевой кислоты, имеющий гелеобразный вид.

В молекулярном виде данный процесс:

Na 2 SiO 3 + 2HCl = NaCl+ H 2 SiO 3

Гидролиз

В аналитической химии гидролиз по аниону является одним из способов определения реакции среды в растворах солей. Для того чтобы правильно определить вариант протекающего гидролиза, необходимо выяснить, из какой кислоты и основания получена соль.

Например, сульфид алюминия образован нерастворимым гидроксидом алюминия и слабой сероводородной кислотой. В водном растворе этой соли происходит гидролиз по аниону и по катиону, поэтому среда нейтральна. Ни один из индикаторов не будет менять своей окраски, следовательно, путем гидролиза сложно будет провести определение состава данного соединения.

Заключение

Качественные реакции, которые используют в аналитической химии для определения анионов, позволяют получать в виде осадков определенные соли. В зависимости от того, анионы какой аналитической группы необходимо выявить, для эксперимента подбирается определенный групповой реактив.

Именно по этой методике проводят определение качества питьевой воды, выявляя, не превышает ли количественное содержание анионов хлора, сульфата, карбоната тех предельных допустимых концентраций, которые установлены санитарно-гигиеническими требованиями.

В условиях школьной лаборатории эксперименты, касающиеся определения анионов, являются одним из вариантов заданий исследовательского характера на практической работе. В ходе эксперимента школьники не только анализируют цвета получаемых осадков, но и составляют уравнения реакций.

Кроме того, элементы качественного анализа предлагаются выпускникам в итоговых тестах по химии, позволяют определить уровень владения будущими химиками и инженерами молекулярными, полными и сокращенными ионными уравнениями.



Читайте также: